Retinoic acid and thyroid hormone induce gene expression through a common responsive element

Nature ◽  
1988 ◽  
Vol 336 (6196) ◽  
pp. 262-265 ◽  
Author(s):  
Kazuhiko Umesono ◽  
Vincent Giguere ◽  
Christopher K. Glass ◽  
Michael G. Rosenfeld ◽  
Ronald M. Evans
1996 ◽  
Vol 16 (1) ◽  
pp. 318-327 ◽  
Author(s):  
P Garcia-Villalba ◽  
A M Jimenez-Lara ◽  
A Aranda

The thyroid hormone, retinoic acid (RA), and vitamin D regulate gene expression by binding to similar receptors which act as ligand-inducible transcription factors. Incubation of pituitary GH4C1 cells with nanomolar concentrations of vitamin D markedly reduces the response of the rat growth hormone mRNA to thyroid hormone triiodothyronine (T3) and RA. The stimulation of growth hormone gene expression by both ligands is mediated by a common hormone response element (TREGH) present in the 5'-flanking region of the gene, and the inhibition caused by vitamin D is due to transcriptional interference of the vitamin D receptor on this DNA element. No inhibition of the basal promoter activity by the vitamin was observed. The response to T3 and RA of a heterologous promoter containing this element, the palindromic T3- and RA-responsive sequence TREPAL, or a direct repeat of the same motif is also inhibited by vitamin D. In contrast, vitamin D strongly induces the activity of constructs containing a vitamin D response element, and neither T3 nor RA reduces vitamin D-mediated transactivation. Transfection with an expression vector for the retinoid X receptor alpha (RXR alpha) increases transactivation by T3 and RA but does not abolish the inhibition caused by the vitamin. Gel retardation experiments show that the vitamin D receptor (VDR) as a heterodimer with RXR weakly binds to the T3- and RA-responsive elements. Additionally, VDR displaces binding of T3 and RA receptors in a dose-dependent manner. Our data suggest the formation of TR-VDR and RAR-VDR heterodimers with RXR. The fact that the same response element mediates opposite effects of at least four different nuclear receptors provides a greater complexity and flexibility of the transcriptional responses to their ligands.


1997 ◽  
Vol 16 (4) ◽  
pp. 421-431 ◽  
Author(s):  
PILAR GARCIA-VILLALBA ◽  
ANA M. JIMENEZ-LARA ◽  
ANA ISABEL CASTILLO ◽  
ANA ARANDA

1992 ◽  
Vol 286 (3) ◽  
pp. 755-760 ◽  
Author(s):  
S Kato ◽  
H Mano ◽  
T Kumazawa ◽  
Y Yoshizawa ◽  
R Kojima ◽  
...  

We have investigated the effects of retinoids, vitamin D and thyroid hormone on the levels of retinoic acid receptor (RAR)alpha, RAR beta and RAR gamma mRNAs in intact animals. Although vitamin A deficiency caused no significant changes in the levels of RAR alpha and RAR gamma mRNAs, the level of RAR beta transcripts was greatly decreased in various tissues of vitamin A-deficient rats, but was restored rapidly to a normal level after administration of retinoic acid. Retinol also restored the RAR beta mRNA level, but the magnitude and kinetics of the induction differed from those by retinoic acid. The use of specific inhibitors demonstrated that this autoregulation of RAR beta gene expression in vivo occurred at the transcriptional level. In addition, from these results it was postulated that the maintenance of the normal RAR beta mRNA levels seemed to require a threshold serum retinol concentration (about 25 micrograms/dl). Moreover, we found that administration of retinol and retinoic acid to normal rats caused the overexpression of RAR beta transcripts (2-15-fold) when compared with the control levels of RAR beta mRNA, although the levels of RAR alpha and RAR gamma mRNAs were not affected. Vitamin D and thyroid hormone did not modulate the levels of RAR transcripts. These findings clearly indicate the specific ligand regulation of RAR beta gene expression in intact animals. The altered levels of RAR beta according to retinoid status may affect retinoid-inducible gene expression.


1997 ◽  
Vol 136 (3) ◽  
pp. 251-264 ◽  
Author(s):  
J Enrique Silva ◽  
Rogerio Rabelo

Abstract Uncoupling protein (UCP) is essential to the thermogenic function of brown adipose tissue (BAT). The thermogenic role of this protein is due to its capacity to uncouple oxidative phosphorylation in a regulated manner. The thermogenic potential of BAT is determined by its content of UCP. The gene encoding this protein is under complex regulation. Catecholamines, via cAMP, thyroid hormone and retinoic acid, directly stimulate the gene acting upon an upstream (−2·28/−2·49 kb) enhancer sequence, but cAMP may act upon other sequences of the gene as well. CCAAT enhancer binding proteins and peroxisome proliferation activator receptor (PPAR)γ2 have also been implicated in the regulation of the gene acting on discrete sequences. While the thyroid hormone response and retinoic acid response elements (TRE and RARE) have been well defined, the cAMP response elements (CRE) remain elusive. The two TREs are 27 bp apart between −2·33 kb and −2·39 kb. The synergism between cAMP and thyroid hormone seems to reside in a 39 bp sequence downstream (−2·28/−2·32 kb). The most important CRE, the RARE, a cell-specific enhancer and a putative PPAR element are all concentrated in a 90 bp regulatory element of great complexity (−2·40/−22·49 kb). Other hormones, such as insulin and glucocorticoids, and IGF-I also modulate the expression of the gene but their effects seem to be largely indirect. Understanding the regulation of the UCP gene expression may facilitate the development of interventions in obesity and related disorders. European Journal of Endocrinology 136 251–264


1992 ◽  
Vol 99 (6) ◽  
pp. 842-847 ◽  
Author(s):  
Marjana Tomic-Canic ◽  
Ivana. Sunjevaric ◽  
Irwin M Freedberg ◽  
Miroslav Blumenberg

Sign in / Sign up

Export Citation Format

Share Document