scholarly journals T-cell immunotherapy with a chimeric receptor against CD38 is effective in eradicating chemotherapy-resistant B-cell lymphoma cells overexpressing survivin induced by BMI-1

2012 ◽  
Vol 2 (6) ◽  
pp. e75-e75 ◽  
Author(s):  
J Bhattacharyya ◽  
K Mihara ◽  
A Kitanaka ◽  
K Yanagihara ◽  
T Kubo ◽  
...  
2021 ◽  
Vol 9 (6) ◽  
pp. e002029
Author(s):  
Jiachen Wang ◽  
Zhen Shang ◽  
Jue Wang ◽  
Jinhuan Xu ◽  
Weigang Li ◽  
...  

2009 ◽  
Vol 15 (2) ◽  
pp. 70
Author(s):  
S.O. Ang ◽  
S. Olivares ◽  
E. Shpall ◽  
D.A. Lee ◽  
R.E. Champlin ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4637-4637
Author(s):  
Gerald G. Wulf ◽  
Anita Boehnke ◽  
Bertram Glass ◽  
Lorenz Truemper

Abstract Anti-CD45 mediated cytoreduction is an effective means for T-cell depletion in rodents and humans. In man, the CD45-specific rat monoclonal antibodies YTH24 and YTH54 are IgG2b subclass, exert a predominantly complement-dependent cytolytic activity against normal T-lymphocytes, and have been safely given to patients as part of conditioning therapies for allogeneic stem cell transplantation. The efficacy of such antibodies against human lymphoma is unknown. Therefore, we evaluated the cytolytic activity of YTH24 and YTH54 by complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), as well as by direct apoptotic and antiproliferative effects, against a panel of Hodgkin disease (HD) and non-Hodgkin lymphoma (NHL) cell lines, and against primary specimens. Significant CDC activity (>50% cytolysis) of the antibodies YTH54 and YTH24 was observed against three of five T-cell lymphoma lines, but against only one of nine B-cell lymphoma lines and none of four HD cell lines. The combination of YTH54 and YTH24 induced ADCC in all T-cell lymphoma cell lines and three primary leukemic T-cell lymphoma specimens, but were ineffective in B-cell lymphoma and HD cell lines.There were only minor effects of either antibody or the combination on lymphoma cell apoptosis or cell cycle arrest. In summary, anti-CD45 mediated CDC and ADCC via the antibodies YTH24 and YTH54 are primarily effective against lymphoma cells with T-cell phenotype, and may be an immunotherapeutic tool for the treatment of human T-cell lymphoma.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 465-465
Author(s):  
Jianfei Qian ◽  
Sungyoul Hong ◽  
Liang Zhang ◽  
Yuhuan Zheng ◽  
Haiyan Li ◽  
...  

Abstract Abstract 465 Immunotherapy may complement the current treatments for lymphomas. The lack of suitable shared lymphoma-associated antigens limits its applicability. Therefore, identification and utilization of novel and more potent tumor-associated antigens, particularly those shared among patients, are urgently needed to improve the efficacy of immunotherapy in the diseases. Recent studies have shown that Dickkopf-1 (DKK1), a secreted protein and Wnt signaling pathway inhibitor, is highly expressed by myeloma and other tumor cells, and is absent from normal tissues and organs except placenta and prostate. In the present study we demonstrated that DKK1 is also overexpressed in mantle cell lymphoma (MCL) and diffuse large B-cell lymphoma (DLBCL). Using DKK1 peptide-pulsed dendritic cells (DCs), we successfully generated HLA-A*0201+ DKK1-specific CTL lines and clones in vitro. These CTLs effectively lysed DKK1+/HLA-A*0201+ lymphoma cell lines Jeko-1 and Granta 519 cells, but not DKK1-/HLA-A*0201+ BJAB, RL and Mino cells nor DKK1+/HLA-A*020- CA46 and Daudi cells. Furthermore, the T-cell clones efficiently killed DKK1+/HLA-A*0201+ primary B-cell lymphoma cells from patients but not lymphoma cells from DKK1–/HLA-A*0201+ patients. HLA-ABC or HLA-A*0201 blocking mAbs significantly inhibited T cell-mediated cytotoxicity against peptide-pulsed T2 cells (P < .01, compared with medium control). No inhibitory effect was observed with mAb against HLA-DR and isotype control IgG. The results indicate that the cytotoxicity was attributed to MHC class I and more specifically, HLA-A*0201-restricted CD8+ CTLs. The CTLs did not kill DKK1–/HLA-A*0201+ DCs, B cells, or PBMCs, These results suggest that the CTLs recognized DKK1 peptides that are naturally processed and presented in the context of HLA-A*0201 molecules on lymphoma cells. To determine the in vivo antitumor activity, NOD-SCID and SCID-hu mice were used for lymphoma cell lines and primary lymphoma cells, respectively. Mice were treated with DKK1-specific CTLs after tumor established in NOD-SCID and SCID-hu mice. Control mice were treated with naïve CD8+ T cells or PBS alone. Tumor burden was measured according to levels of circulating human B2M, and survival rates were determined. Low levels (< 50 ng/ml) of circulating human B2M were detected in group treated DKK1-specific CTLs, while high levels (≥ 150 ng/ml) of circulating human B2M were detected in control mice. In SCID-hu model, X-ray examination showed that established tumors were eradicated in 60% mice treated with DKK1-specific CTLs, while large tumor burdens were found in all control mice. In NOD-SCID model, 40% of mice survived with the treatment of DKK1-specific CTLs. TUNEL assay further confirmed that tumor cells were lysed by DKK1-specific CTLs not naïve CD8+ T cells. These results indicate that DKK1-specific CTLs are able to eradicate established, patient-derived primary B- cell lymphoma in the hosts and adoptive transfer of DKK1-specific CTLs may be used for B-cell lymphoma therapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1391-1391 ◽  
Author(s):  
Cristina Bertolo ◽  
Raquel Malumbres ◽  
Ainara Sagardoy ◽  
Eloy F Robles ◽  
Jose I Martinez-Ferrandis ◽  
...  

Abstract Abstract 1391 LITAF was discovered as a p53-induced transcript that promoted TNFa secretion in monocytes in response to LPS. We previously reported that LITAF is inactivated by deletion or promoter hypermethylation in germinal center-derived B-cell lymphomas. However, the function of LITAF in B lymphocytes is unknown. Using gene expression analysis of isolated B-cell subpopulation and immunohistochemical studies of tonsil lymphoid follicles we found that LITAF is expressed in naïve B lymphocytes and is repressed within the germinal centers (GCs). Thus, LITAF showed an opposite expression to BCL6, an essential regulator of GC development and function. Likewise, expression of LITAF and BCL6 were inversely correlated in cell lines and biopsies from patients with B-cell lymphoma, further suggesting a link between LITAF and BCL6. ChIP-on-chip and ChIP-sequencing analyses of B cells coupled with luciferase reporter assays revealed that BCL6 repressed LITAF expression by binding to its promoter. Accordingly, BCL6 silencing with siRNAs or after exposure to a BCL6-inhibitor peptide increased LITAF expression, indicating that LITAF is transcriptionally repressed by BCL6 in GC B lymphocytes and in B-cell lymphoma cells. To initially elucidate the function of LITAF in B cells, gain-and-loss of function experiments were performed in different cellular models. LITAF expression was not related to TNFa secretion after LPS exposure, nor modulated cell proliferation or apoptosis in B cells. However, sustained expression of LITAF in B-cell lymphoma cells increased cell size, lysosome content and mitochondrial mass. Gene expression microarray studies defined a LITAF-related transcriptional signature containing genes involved in the regulation of endomembranes, vesicle trafficking and protein transport. Accordingly, immunofluorescence analysis co-localized LITAF with lysosomes and with autophagosomes expressing LC3, the mammalian homolog of yeast autophagy-related protein (Atg8), as well as with the lysosomal sorting-associated proteins NEDD4 and TSG101, both in normal CD19+ B lymphocytes and in B-cell lymphoma cells. In addition, LITAF expression induced autophagic activity in B cells, shown by an increase in the FL1/FL3 ratio after acridine orange staining and by converting LC3-I to LC3-II, which were more evident upon cell starvation. Together, these data suggest that LITAF may play a role in the processing of proteins in autophagosomes through regulating autophagy. To investigate LITAF function in vivo, we generated mice with targeted deletion of the Litaf gene in B lymphocytes by using the Cre-loxP system. Litaf -mb1-Cre (Litaf−/− ) mice developed healthy and showed normal distribution of hematopoietic cell subpopulations. However, Litaf−/− mice were unable to develop full T-cell dependent immune responses, presenting PNA-stained, Litaf-negative GCs that were absent or had marked reduction in size and number. Accordingly, reduced amounts of IgM, IgG1 and IgG3 antibodies as a consequence of abnormal class switch recombination (CSR) were detected in immunized mice. However, in experiments testing CSR in vitro, in which B cells are artificially activated in the absence of T cells, the amounts of IgM/IgG1/IgG3 did not differ between knock-out and control groups. Similarly, mouse immunization with a T-cell independent antigen did not induce differences in immunoglobulin production. Further studies of GCs in T-cell immunized Litaf−/− mice using an antibody for the Class II-associated invariant chain peptide (CLIP) revealed that the atrophic GCs in Litaf−/− mice showed strong CLIP expression in comparison to wild-type littermates. In normal immune responses, CLIP peptides bind to MHC class II molecules in endolysosomes, until they are displaced by the antigen, then releasing CLIP and allowing MHC II-antigen complexes to be transported to the cell membrane for T-cell presentation. The failure to develop appropriate immune responses together with the accumulation of CLIP peptides in Litaf -deficient mice indicate that Litaf is essential for adequate T-cell dependent immune responses in GC B lymphocytes, possibly through facilitating the presentation of the antigens to MHC II molecules in the endolysosomes. Once this process is assembled and the T-cell activated B lymphocytes enter the GCs, BCL6 represses LITAF to prevent additional interactions between B and T cells during BCR editing. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 6 (5) ◽  
pp. 344-346 ◽  
Author(s):  
Robert F Wynn ◽  
Peter D Arkwright ◽  
Tanzina Haque ◽  
Maged I Gharib ◽  
Gwen Wilkie ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 805-805 ◽  
Author(s):  
Otáhal Pavel ◽  
Dana Prukova ◽  
Vlastimil Král ◽  
Radek Jaksa ◽  
Lucie Lateckova ◽  
...  

Abstract Tumor immunotherapy based on the use of Chimeric Receptor Modified T cells (CAR T cells) is a promising approach for the treatment of a refractory hematological cancer. However, a robust response mediated by CAR T cells is observed only in a minority of patients and the expansion and persistence of CAR T cells in vivo is mostly unpredictable. In order to enhance the effectiveness of CAR-based immunotherapy we tested the immunoadjuvant properities of lenalidomide in combination with CAR19 T cells in a mouse model of B cell lymphoma. CAR19 construct which was used is composed of anti-CD19scFv joined with signaling domain of 4-1BB and TCR zeta and was delivered into T cell via lentiviral transduction. Lenalidomide is an immunomodulatory drug used for the treatment of multiple myeloma and selected B-cell malignancies, e.g. mantle cell lymphoma (MCL) or activated B-cell subtype of diffuse large B-cell lymphoma (ABC-DLBCL). However, the precise mechanism of action is not very well understood and it is believed that is mediated by a modulation of activity of E3 ubiquitin ligase cereblon which leads to increased ubiquitinylation of Ikaros and Aiolos transcription factors resulting in changes of expression of various receptors on the surface of tumor cells. To test our hypothesis, immunodeficient NSG mice (NOD-SCID-gamma chain null mice) were s.c. transplanted with various human B cells lymphoma cells (MCL or ABC-DLBCL) followed by i.v treatment with CAR19 T cells with or without daily i.p. lenalidomide. First, when we measured the growth of tumors following treatment with CAR19 T cells plus lenalidomide we found that this combination more effectively suppressed growth of s.c. B-NHL tumors than treatment with only CAR19 T cells or only lenalidomide (Figure 1, 1x10e7 Nemo tumor cell s.c., followed with 2 doses of 1x10(7) CAR19 T cells + Lenalidomide daily, tumor weight was measured 14 days after treatment). Additionally, in this experiment lenalidomide significantly enhanced infiltration of residual tumors by CD8+CAR19 T cells (not shown). Next, we tested the response of CAR19 T cells in vitro to B-NHL cells in the presence or, absence of lenalidomide to determine the costimulatory effect of lenalidomide on signaling via CAR, our data show that lenalidomide significantly enhanced functional response of CAR19 T cells following recognition of B cells in vitro which is demonstrated by enhanced production of IFN-gamma and by increased expression of CD69 by CAR19 T cells, interestingly, this effect was seen only if CAR19 T cells but not B-NHL cells were pre-treated with lenalidomide or, when we activated CAR19 T cell with antibody to CAR but not with antibody to CD3. Thus, our data indicate that lenalidomide might work through direct effects on T cells and specifically enhance signaling via CAR. The biochemical events underlying this costimulatory effect of lenalidomide on signaling by CAR are currently being investigated. In summary, our data support the use of lenalidomide for augmentation CAR-based immunotherapy in clinical settings. Figure 1 Figure 1. Disclosures Klener: Cellgene: Research Funding.


2013 ◽  
Vol 130 (4) ◽  
pp. 230-237 ◽  
Author(s):  
Yuhko Suzuki ◽  
Tsutomu Yoshida ◽  
Guoqin Wang ◽  
Takumi Aoki ◽  
Takuji Katayama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document