scholarly journals The ubiquitin proteasome system and its involvement in cell death pathways

2009 ◽  
Vol 17 (1) ◽  
pp. 1-3 ◽  
Author(s):  
F Bernassola ◽  
A Ciechanover ◽  
G Melino
eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Maxime J Kinet ◽  
Jennifer A Malin ◽  
Mary C Abraham ◽  
Elyse S Blum ◽  
Melanie R Silverman ◽  
...  

Apoptosis is a prominent metazoan cell death form. Yet, mutations in apoptosis regulators cause only minor defects in vertebrate development, suggesting that another developmental cell death mechanism exists. While some non-apoptotic programs have been molecularly characterized, none appear to control developmental cell culling. Linker-cell-type death (LCD) is a morphologically conserved non-apoptotic cell death process operating in Caenorhabditis elegans and vertebrate development, and is therefore a compelling candidate process complementing apoptosis. However, the details of LCD execution are not known. Here we delineate a molecular-genetic pathway governing LCD in C. elegans. Redundant activities of antagonistic Wnt signals, a temporal control pathway, and mitogen-activated protein kinase kinase signaling control heat shock factor 1 (HSF-1), a conserved stress-activated transcription factor. Rather than protecting cells, HSF-1 promotes their demise by activating components of the ubiquitin proteasome system, including the E2 ligase LET-70/UBE2D2 functioning with E3 components CUL-3, RBX-1, BTBD-2, and SIAH-1. Our studies uncover design similarities between LCD and developmental apoptosis, and provide testable predictions for analyzing LCD in vertebrates.


2012 ◽  
Vol 443 (3) ◽  
pp. 681-689 ◽  
Author(s):  
Wan Ning Vanessa Chow ◽  
Hon Wing Luk ◽  
Ho Yin Edwin Chan ◽  
Kwok-Fai Lau

An unstable expansion of the polyglutamine repeat within exon 1 of the protein Htt (huntingtin) causes HD (Huntington's disease). Mounting evidence shows that accumulation of N-terminal mutant Htt fragments is the source of disruption of normal cellular processes which ultimately leads to neuronal cell death. Understanding the degradation mechanism of mutant Htt and improving its clearance has emerged as a new direction in developing therapeutic approaches to treat HD. In the present study we show that the brain-enriched adaptor protein FE65 is a novel interacting partner of Htt. The binding is mediated through WW–polyproline interaction and is dependent on the length of the polyglutamine tract. Interestingly, a reduction in mutant Htt protein level was observed in FE65-knockdown cells, and the process requires the UPS (ubiquitin/proteasome system). Moreover, the ubiquitination level of mutant Htt was found to be enhanced when FE65 is knocked down. Immunofluroescence staining revealed that FE65 associates with mutant Htt aggregates. Additionally, we demonstrated that overexpression of FE65 increases mutant Htt-induced cell death both in vitro and in vivo. These results suggest that FE65 facilitates the accumulation of mutant Htt in cells by preventing its degradation via the UPS, and thereby enhances the toxicity of mutant Htt.


2016 ◽  
Vol 33 ◽  
pp. 73-81 ◽  
Author(s):  
Karnam Shruthi ◽  
S. Sreenivasa Reddy ◽  
P. Yadagiri Reddy ◽  
Potula Shivalingam ◽  
Nemani Harishankar ◽  
...  

2016 ◽  
Author(s):  
Maxime J Kinet ◽  
Jennifer A Malin ◽  
Mary C Abraham ◽  
Elyse S Blum ◽  
Melanie R Silverman ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1308 ◽  
Author(s):  
Boris Margulis ◽  
Anna Tsimokha ◽  
Svetlana Zubova ◽  
Irina Guzhova

Throughout their life cycles, cells are subject to a variety of stresses that lead to a compromise between cell death and survival. Survival is partially provided by the cell proteostasis network, which consists of molecular chaperones, a ubiquitin-proteasome system of degradation and autophagy. The cooperation of these systems impacts the correct function of protein synthesis/modification/transport machinery starting from the adaption of nascent polypeptides to cellular overcrowding until the utilization of damaged or needless proteins. Eventually, aging cells, in parallel to the accumulation of flawed proteins, gradually lose their proteostasis mechanisms, and this loss leads to the degeneration of large cellular masses and to number of age-associated pathologies and ultimately death. In this review, we describe the function of proteostasis mechanisms with an emphasis on the possible associations between them.


Marine Drugs ◽  
2018 ◽  
Vol 16 (12) ◽  
pp. 467 ◽  
Author(s):  
Gerardo Della Sala ◽  
Francesca Agriesti ◽  
Carmela Mazzoccoli ◽  
Tiziana Tataranni ◽  
Valeria Costantino ◽  
...  

The ubiquitin-proteasome pathway (UPP) is the central protein degradation system in eukaryotic cells, playing a key role in homeostasis maintenance, through proteolysis of regulatory and misfolded (potentially harmful) proteins. As cancer cells produce proteins inducing cell proliferation and inhibiting cell death pathways, UPP inhibition has been exploited as an anticancer strategy to shift the balance between protein synthesis and degradation towards cell death. Over the last few years, marine invertebrates and microorganisms have shown to be an unexhaustive factory of secondary metabolites targeting the UPP. These chemically intriguing compounds can inspire clinical development of novel antitumor drugs to cope with the incessant outbreak of side effects and resistance mechanisms induced by currently approved proteasome inhibitors (e.g., bortezomib). In this review, we report about (a) the role of the UPP in anticancer therapy, (b) chemical and biological properties of UPP inhibitors from marine sources discovered in the last decade, (c) high-throughput screening techniques for mining natural UPP inhibitors in organic extracts. Moreover, we will tell about the fascinating story of salinosporamide A, the first marine natural product to access clinical trials as a proteasome inhibitor for cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document