scholarly journals Clogging the Ubiquitin-Proteasome Machinery with Marine Natural Products: Last Decade Update

Marine Drugs ◽  
2018 ◽  
Vol 16 (12) ◽  
pp. 467 ◽  
Author(s):  
Gerardo Della Sala ◽  
Francesca Agriesti ◽  
Carmela Mazzoccoli ◽  
Tiziana Tataranni ◽  
Valeria Costantino ◽  
...  

The ubiquitin-proteasome pathway (UPP) is the central protein degradation system in eukaryotic cells, playing a key role in homeostasis maintenance, through proteolysis of regulatory and misfolded (potentially harmful) proteins. As cancer cells produce proteins inducing cell proliferation and inhibiting cell death pathways, UPP inhibition has been exploited as an anticancer strategy to shift the balance between protein synthesis and degradation towards cell death. Over the last few years, marine invertebrates and microorganisms have shown to be an unexhaustive factory of secondary metabolites targeting the UPP. These chemically intriguing compounds can inspire clinical development of novel antitumor drugs to cope with the incessant outbreak of side effects and resistance mechanisms induced by currently approved proteasome inhibitors (e.g., bortezomib). In this review, we report about (a) the role of the UPP in anticancer therapy, (b) chemical and biological properties of UPP inhibitors from marine sources discovered in the last decade, (c) high-throughput screening techniques for mining natural UPP inhibitors in organic extracts. Moreover, we will tell about the fascinating story of salinosporamide A, the first marine natural product to access clinical trials as a proteasome inhibitor for cancer treatment.

2014 ◽  
Vol 19 (7) ◽  
pp. 989-999 ◽  
Author(s):  
B. Nicholson ◽  
Suresh Kumar ◽  
S. Agarwal ◽  
M. J. Eddins ◽  
J. G. Marblestone ◽  
...  

The approval of proteasome inhibitors bortezomib and carfilzomib and the E3 ligase antagonist thalidomide and its analogs, lenalidomide and pomalidomide, validates the ubiquitin–proteasome pathway as a source of novel drugs for treating cancer and, potentially, a variety of devastating illnesses, including inflammation, cardiovascular disease, and neurodegenerative disease. All elements of this critical regulatory pathway—the proteasome itself, E3 ligases (which conjugate ubiquitin to target proteins), and deubiquitylating enzymes (which deconjugate ubiquitin, reversing ligase action)—are potential therapeutic targets, and all have been worked on extensively during the past decade. No deubiquitylase inhibitors or activators have yet progressed to clinical trial, however, despite compelling target validation and several years of high-throughput screening and preclinical development of hits by numerous pharmaceutical companies, biotechnology organizations, and academic groups. The appropriateness of deubiquitylases as therapeutic targets in many disease areas is reviewed, followed by evidence that selective inhibitors of these cysteine proteases can be discovered. Because the lack of progress in drug-discovery efforts with deubiquitylases suggests a need for improved discovery methodologies, currently available platforms and strategies are analyzed, and improved or completely novel, unrelated approaches are considered in terms of their likelihood of producing clinically viable effectors of deubiquitylases.


2020 ◽  
Vol 47 (9) ◽  
pp. 7209-7228 ◽  
Author(s):  
Srimanta Patra ◽  
Prakash Priyadarshi Praharaj ◽  
Debasna Pritimanjari Panigrahi ◽  
Biswajit Panda ◽  
Chandra Sekhar Bhol ◽  
...  

2020 ◽  
Vol 21 (13) ◽  
pp. 1313-1325
Author(s):  
Azmi Yerlikaya ◽  
Ertan Kanbur

Background: The ubiquitin-proteasome pathway is crucial for all cellular processes and is, therefore, a critical target for the investigation and development of novel strategies for cancer treatment. In addition, approximately 30% of newly synthesized proteins never attain their final conformations due to translational errors or defects in post-translational modifications; therefore, they are also rapidly eliminated by the ubiquitin-proteasome pathway. Objective: Here, an effort was made to outline the recent findings deciphering the new molecular mechanisms involved in the regulation of ubiquitin-proteasome pathway as well as the resistance mechanisms developed against proteasome inhibitors in cell culture experiments and in the clinical trials. Results: Since cancer cells have higher proliferation rates and are more prone to translational errors, they require the ubiquitin-proteasome pathway for selective advantage and sustained proliferation. Therefore, drugs targeting the ubiquitin-proteasome pathway are promising agents for the treatment of both hematological and solid cancers. Conclusions: A number of proteasome inhibitors are approved and used for the treatment of advanced and relapsed multiple myeloma. Unfortunately, drug resistance mechanisms may develop very fast within days of the start of the proteasome inhibitor-treatment either due to the inherent or acquired resistance mechanisms under selective drug pressure. However, a comprehensive understanding of the mechanisms leading to the proteasome inhibitor-resistance will eventually help the design and development of novel strategies involving new drugs and/or drug combinations for the treatment of a number of cancers.


2005 ◽  
Vol 41 ◽  
pp. 205-218
Author(s):  
Constantine S. Mitsiades ◽  
Nicholas Mitsiades ◽  
Teru Hideshima ◽  
Paul G. Richardson ◽  
Kenneth C. Anderson

The ubiquitin–proteasome pathway is a principle intracellular mechanism for controlled protein degradation and has recently emerged as an attractive target for anticancer therapies, because of the pleiotropic cell-cycle regulators and modulators of apoptosis that are controlled by proteasome function. In this chapter, we review the current state of the field of proteasome inhibitors and their prototypic member, bortezomib, which was recently approved by the U.S. Food and Drug Administration for the treatment of advanced multiple myeloma. Particular emphasis is placed on the pre-clinical research data that became the basis for eventual clinical applications of proteasome inhibitors, an overview of the clinical development of this exciting drug class in multiple myeloma, and a appraisal of possible uses in other haematological malignancies, such non-Hodgkin's lymphomas.


2020 ◽  
Vol 48 (3) ◽  
pp. 137-152
Author(s):  
Marko Manevski ◽  
Dinesh Devadoss ◽  
Ruben Castro ◽  
Lauren Delatorre ◽  
Adriana Yndart ◽  
...  

2020 ◽  
Vol 27 (29) ◽  
pp. 4778-4788 ◽  
Author(s):  
Victoria Heredia-Soto ◽  
Andrés Redondo ◽  
José Juan Pozo Kreilinger ◽  
Virginia Martínez-Marín ◽  
Alberto Berjón ◽  
...  

Sarcomas are tumours of mesenchymal origin, which can arise in bone or soft tissues. They are rare but frequently quite aggressive and with a poor outcome. New approaches are needed to characterise these tumours and their resistance mechanisms to current therapies, responsible for tumour recurrence and treatment failure. This review is focused on the potential of three-dimensional (3D) in vitro models, including multicellular tumour spheroids (MCTS) and organoids, and the latest data about their utility for the study on important properties for tumour development. The use of spheroids as a particularly valuable alternative for compound high throughput screening (HTS) in different areas of cancer biology is also discussed, which enables the identification of new therapeutic opportunities in commonly resistant tumours.


Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 155
Author(s):  
Pankaj Ahluwalia ◽  
Meenakshi Ahluwalia ◽  
Ashis K. Mondal ◽  
Nikhil Sahajpal ◽  
Vamsi Kota ◽  
...  

Lung cancer is one of the leading causes of death worldwide. Cell death pathways such as autophagy, apoptosis, and necrosis can provide useful clinical and immunological insights that can assist in the design of personalized therapeutics. In this study, variations in the expression of genes involved in cell death pathways and resulting infiltration of immune cells were explored in lung adenocarcinoma (The Cancer Genome Atlas: TCGA, lung adenocarcinoma (LUAD), 510 patients). Firstly, genes involved in autophagy (n = 34 genes), apoptosis (n = 66 genes), and necrosis (n = 32 genes) were analyzed to assess the prognostic significance in lung cancer. The significant genes were used to develop the cell death index (CDI) of 21 genes which clustered patients based on high risk (high CDI) and low risk (low CDI). The survival analysis using the Kaplan–Meier curve differentiated patients based on overall survival (40.4 months vs. 76.2 months), progression-free survival (26.2 months vs. 48.6 months), and disease-free survival (62.2 months vs. 158.2 months) (Log-rank test, p < 0.01). Cox proportional hazard model significantly associated patients in high CDI group with a higher risk of mortality (Hazard Ratio: H.R 1.75, 95% CI: 1.28–2.45, p < 0.001). Differential gene expression analysis using principal component analysis (PCA) identified genes with the highest fold change forming distinct clusters. To analyze the immune parameters in two risk groups, cytokines expression (n = 265 genes) analysis revealed the highest association of IL-15RA and IL 15 (> 1.5-fold, p < 0.01) with the high-risk group. The microenvironment cell-population (MCP)-counter algorithm identified the higher infiltration of CD8+ T cells, macrophages, and lower infiltration of neutrophils with the high-risk group. Interestingly, this group also showed a higher expression of immune checkpoint molecules CD-274 (PD-L1), CTLA-4, and T cell exhaustion genes (HAVCR2, TIGIT, LAG3, PDCD1, CXCL13, and LYN) (p < 0.01). Furthermore, functional enrichment analysis identified significant perturbations in immune pathways in the higher risk group. This study highlights the presence of an immunocompromised microenvironment indicated by the higher infiltration of cytotoxic T cells along with the presence of checkpoint molecules and T cell exhaustion genes. These patients at higher risk might be more suitable to benefit from PD-L1 blockade or other checkpoint blockade immunotherapies.


Sign in / Sign up

Export Citation Format

Share Document