scholarly journals Inhibition of Stat3 signaling pathway by nifuroxazide improves antitumor immunity and impairs colorectal carcinoma metastasis

2017 ◽  
Vol 8 (1) ◽  
pp. e2534-e2534 ◽  
Author(s):  
Ting-Hong Ye ◽  
Fang-Fang Yang ◽  
Yong-Xia Zhu ◽  
Ya-Li Li ◽  
Qian Lei ◽  
...  

Abstract Colorectal carcinoma (CRC) is the one of the most common cancers with considerable metastatic potential, explaining the need for new drug candidates that inhibit tumor metastasis. The signal transducers and activators of the transcription 3 (Stat3) signaling pathway has an important role in CRC and has been validated as a promising anticancer target for CRC therapy. In the present study, we report our findings on nifuroxazide, an antidiarrheal agent identified as an inhibitor of Stat3. Our studies showed that nifuroxazide decreased the viability of three CRC cell lines and induced apoptosis of cancer cells in a concentration-dependent manner. Moreover, western blot analysis demonstrated that the occurrence of its apoptosis was correlated with the activation of Bax and cleaved caspase-3, and decreased the expression of Bcl-2. In addition, nifuroxazide markedly impaired CRC cell migration and invasion by downregulating phosphorylated-Stat3Tyr705, and also impaired the expression of matrix metalloproteinases (MMP-2 and MMP-9). Furthermore, our studies showed that nifuroxazide also significantly inhibited the tumor metastasis in lung and abdomen metastasis models of colon cancer. Meanwhile, nifuroxazide functionally reduced the proliferation index, induced tumor apoptosis and impaired metastasis. Notably, nifuroxazide reduced the number of myeloid-derived suppressor cells in the blood, spleens and tumors, accompanied by the increased infiltration of CD8+ T cells in the tumors. Importantly, a marked decrease in the number of M2-type macrophages in tumor in the abdomen metastasis model was also observed. Taken together, our results indicated that nifuroxazide could effectively inhibit tumor metastasis by mediating Stat3 pathway and it might have a therapeutic potential for the treatment of CRC.

2021 ◽  
Vol 12 ◽  
Author(s):  
Leitao Sun ◽  
Shuning Ding ◽  
Qi Luo ◽  
Peipei Wang ◽  
Xiao Yang ◽  
...  

As one of the most common neoplasms globally, lung cancer (LC) is the leading cause of cancer-related mortality. Recurrence and metastasis negatively influencing therapeutic efficacy and overall survival demand new strategies in LC treatment. The advantages of TCM are increasingly highlighted. In this study, we obtained the major chemical components and their ratios in the aqueous extract of Taxus wallichiana var. chinensis (Pilg.) Florin (AETW) by UPLC-Q/TOF-MS/MS detection. The CCK-8 assay revealed that AETW could selectively inhibit the growth of A549 and HCC827 cells in a dose-dependent manner with little effect on normal human lung cells. Moreover, both in vitro and in vivo experiments showed that AETW was able to suppress the capacities of cell migration and invasion and downregulate the EMT and the JAK/STAT3 signaling pathway. To further probe into the molecular mechanism, the overexpression of STAT3 was performed into LC cells with AETW treatment, which counteracted the inhibitory effect on malignant behaviors of A549 and HCC827 cells with the decline in the expressions of p-JAK and p-STAT3. Taken together, we propose that AETW may inhibit the proliferation and metastasis by inactivating the JAK/STAT3 axis.


Author(s):  
Yang Yang ◽  
Q i Zhang ◽  
Jiakui Liang ◽  
Meiyuan Yang ◽  
Zheng Wang ◽  
...  

Abstract Signal transducing adaptor molecule 2 (STAM2) is a phosphotyrosine protein, which regulates receptor signaling and trafficking of mammalian cells. However, its role in gastric cancer (GC) remains undiscovered. In this study, we aimed to investigate the functions of STAM2 in GC. The mRNA and protein expression levels of STAM2 were measured by quantitative real-time PCR, western blot analysis, and immunohistochemistry. STAM2 was stably silenced in AGS and HGC-27 cells using small interfering RNA. The function of STAM2 in GC cells was further investigated by CCK-8 assay, EdU incorporation assay, flow cytometry, and scratch wound healing and Boyden chamber assays. Additionally, we conducted biological pathway enrichment analysis and rescue assays to explore the effects of STAM2 on JAK/STAT signaling pathway. Our results showed that STAM2 is remarkably highly expressed in GC tissues and cells, and overexpressed STAM2 is correlated with tumor size, advanced tumor node metastasis stage, and poor prognosis. In addition, STAM2 knockdown could significantly inhibit proliferation, block cell cycle, and restrain migration and invasion capabilities of GC cells. Mechanistically, we found that STAM2 knockdown effectively decreased the expressions of MMP2 and MMP9 and the phosphorylation levels of JAK2 and STAT3. Taken together, this study revealed that STAM2 knockdown could suppress malignant process by targeting the JAK2/STAT3 signaling pathway in GC.


Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 29
Author(s):  
Chakrabhavi Dhananjaya Mohan ◽  
Min Hee Yang ◽  
Shobith Rangappa ◽  
Arunachalam Chinnathambi ◽  
Sulaiman Ali Alharbi ◽  
...  

Hepatocellular carcinoma (HCC) is one of the leading cancers that contribute to a large number of deaths throughout the globe. The signal transducer and activator of transcription 3 (STAT3) is a tumorigenic protein that is overactivated in several human malignancies including HCC. In the present report, the effect of 3-formylchromone (3FC) on the STAT3 signaling pathway in the HCC model was investigated. 3FC downregulated the constitutive phosphorylation of STAT3 and non-receptor tyrosine kinases such as JAK1 and JAK2. It also suppressed the transportation of STAT3 to the nucleus and reduced its DNA-binding ability. Pervanadate treatment overrode the 3FC-triggered STAT3 inhibition, and the profiling of cellular phosphatase expression revealed an increase in SHP-2 levels upon 3FC treatment. The siRNA-driven deletion of SHP-2 led to reinstate STAT3 activation. 3FC downmodulated the levels of various oncogenic proteins and decreased CXCL12-driven cell migration and invasion. Interestingly, 3FC did not exhibit any substantial toxicity, whereas it significantly regressed tumor growth in an orthotopic HCC mouse model and abrogated lung metastasis. Overall, 3FC can function as a potent agent that can display antitumor activity by targeting STAT3 signaling in HCC models.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Ting-Hong Ye ◽  
Fang-Fang Yang ◽  
Yong-Xia Zhu ◽  
Ya-Li Li ◽  
Qian Lei ◽  
...  

Since publication of this article, the authors have noticed that there were errors in Fig. 1b (the CT 26 cells colony formation images) and Fig. 7c (the vehicle group images). As a result of the misfiling of the data during preparation of figures, incorrect images were inadvertently inserted in these figures. An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2020 ◽  
Vol 8 ◽  
Author(s):  
Hongtao Luo ◽  
Zhen Yang ◽  
Qiuning Zhang ◽  
Lihua Shao ◽  
Shihong Wei ◽  
...  

Radiation therapy is an important component of the comprehensive treatment of esophageal cancer. However, conventional radiation resistance is one of the main reasons for treatment failure. The superiority of heavy ion radiation in physics and biology has been increasingly highlighted in radiation therapy research. The Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) pathway plays an important role in the occurrence, development and metastasis of esophageal squamous cell carcinoma (ESCC) and is related to the development of resistance to ionizing radiation in ESCC. Therefore, the aim of the present study was to investigate the relationship between carbon ion inhibition of the proliferation and metastasis of esophageal carcinoma cells and the JAK2/STAT3 signaling pathway. The results demonstrated that carbon ion beams significantly reduced cell viability and stimulated apoptosis in human ESCC cells in a dose-dependent manner. In addition, carbon ion beams induced G2/M phase cell cycle arrest in ESCC cells and inhibited tumor metastasis in a dose-dependent manner. Additionally, poorly differentiated KYSE150 cells were more sensitive to the same carbon ion beam dose than moderately differentiated ECA109 cells. Carbon ion beam exposure regulated the relative expression of metastasis-related molecules at the transcriptional and translational levels in ESCC cells. Carbon ion beams also regulated CDH1 and MMP2 downstream of the STAT3 pathway and inhibited ESCC cell metastasis, which activated the STAT3 signaling pathway. This study confirmed the inhibition of cell proliferation and the metastatic effect of carbon ion beam therapy in ESCC cells.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Binlong Zhong ◽  
Deyao Shi ◽  
Fashuai Wu ◽  
Shangyu Wang ◽  
Hongzhi Hu ◽  
...  

Abstract Osteosarcoma (OS) is the most common malignant bone tumor. The prognosis of metastatic and recurrent OS patients still remains unsatisfactory. Cisplatin reveals undeniable anti-tumor effect while induces severe side effects that threatening patients’ health. Dynasore, a cell-permeable small molecule that inhibits dynamin activity, has been widely studied in endocytosis and phagocytosis. However, the anti-tumor effect of dynasore on OS has not yet been ascertained. In the present study, we suggested that dynasore inhibited cell proliferation, migration, invasion, and induced G0/G1 arrest of OS cells. Besides, dynasore repressed tumorigenesis of OS in xenograft mouse model. In addition, we demonstrated that dynasore improved the anti-tumor effect of cisplatin in vitro and in vivo without inducing nephrotoxicity and hepatotoxicity. Mechanistically, dynasore repressed the expression of CCND1, CDK4, p-Rb, and MMP-2. Furthermore, we found that dynasore exerts anti-tumor effects in OS partially via inhibiting STAT3 signaling pathway but not ERK-MAPK, PI3K-Akt or SAPK/JNK pathways. P38 MAPK pathway served as a negative regulatory mechanism in dynasore induced anti-OS effects. Taken together, our study indicated that dynasore does suppress cell proliferation, migration, and invasion via STAT3 signaling pathway, and enhances the antitumor capacity of cisplatin in OS. Our results suggest that dynasore is a novel candidate drug to inhibit the tumor growth of OS and enhance the anti-tumor effects of cisplatin.


Sign in / Sign up

Export Citation Format

Share Document