Switch system fine tunes protein translation

Author(s):  
Sarah Crunkhorn
2017 ◽  
Vol 23 (32) ◽  
pp. 4745-4757 ◽  
Author(s):  
Ada Pesapane ◽  
Pia Ragno ◽  
Carmine Selleri ◽  
Nunzia Montuori

The 67 kDa high affinity laminin receptor (67LR) is a non-integrin cell surface receptor for laminin, the major component of basement membranes. Interactions between 67LR and laminin play a major role in mediating cell adhesion, migration, proliferation and survival. 67LR derives from homo- or hetero-dimerization of a 37 kDa cytosolic precursor (37LRP), most probably by fatty acid acylation. Interestingly, 37LRP, also called p40 or OFA/iLR (oncofetal antigen/immature laminin receptor), is a multifunctional protein with a dual activity in the cytoplasm and in the nucleus. In the cytoplasm, 37LRP it is associated with the 40S subunit of ribosome, playing a critical role in protein translation and ribosome biogenesis while in the nucleus it is tightly associated with nuclear structures, and bound to components of the cytoskeleton, such as tubulin and actin. 67LR is mainly localized in the cell membrane, concentrated in lipid rafts. Acting as a receptor for laminin is not the only function of 67LR; indeed, it also acts as a receptor for viruses, bacteria and prions. 67LR expression is increased in neoplastic cells and correlates with an enhanced invasive and metastatic potential. The primary function of 67LR in cancer is to promote tumor cell adhesion to basement membranes, the first step in the invasion-metastasis cascade. Thus, 67LR is overexpressed in neoplastic cells as compared to their normal counterparts and its overexpression is considered a molecular marker of metastatic aggressiveness in cancer of many tissues, including breast, lung, ovary, prostate, stomach, thyroid and also in leukemia and lymphoma. Thus, inhibiting 67LR binding to laminin could be a feasible approach to block cancer progression. Here, we review the current understanding of the structure and function of this molecule, highlighting its role in cancer invasion and metastasis and reviewing the various therapeutic options targeting this receptor that could have a promising future application.


2019 ◽  
Vol 19 (4) ◽  
pp. 255-263 ◽  
Author(s):  
Yuangang Wu ◽  
Xiaoxi Lu ◽  
Bin Shen ◽  
Yi Zeng

Background: Osteoarthritis (OA) is a disease characterized by progressive degeneration, joint hyperplasia, narrowing of joint spaces, and extracellular matrix metabolism. Recent studies have shown that the pathogenesis of OA may be related to non-coding RNA, and its pathological mechanism may be an effective way to reduce OA. Objective: The purpose of this review was to investigate the recent progress of miRNA, long noncoding RNA (lncRNA) and circular RNA (circRNA) in gene therapy of OA, discussing the effects of this RNA on gene expression, inflammatory reaction, apoptosis and extracellular matrix in OA. Methods: The following electronic databases were searched, including PubMed, EMBASE, Web of Science, and the Cochrane Library, for published studies involving the miRNA, lncRNA, and circRNA in OA. The outcomes included the gene expression, inflammatory reaction, apoptosis, and extracellular matrix. Results and Discussion: With the development of technology, miRNA, lncRNA, and circRNA have been found in many diseases. More importantly, recent studies have found that RNA interacts with RNA-binding proteins to regulate gene transcription and protein translation, and is involved in various pathological processes of OA, thus becoming a potential therapy for OA. Conclusion: In this paper, we briefly introduced the role of miRNA, lncRNA, and circRNA in the occurrence and development of OA and as a new target for gene therapy.


Sign in / Sign up

Export Citation Format

Share Document