scholarly journals Guidelines for diagnostic next-generation sequencing

2015 ◽  
Vol 24 (1) ◽  
pp. 2-5 ◽  
Author(s):  
Gert Matthijs ◽  
Erika Souche ◽  
Mariëlle Alders ◽  
Anniek Corveleyn ◽  
Sebastian Eck ◽  
...  

Abstract We present, on behalf of EuroGentest and the European Society of Human Genetics, guidelines for the evaluation and validation of next-generation sequencing (NGS) applications for the diagnosis of genetic disorders. The work was performed by a group of laboratory geneticists and bioinformaticians, and discussed with clinical geneticists, industry and patients’ representatives, and other stakeholders in the field of human genetics. The statements that were written during the elaboration of the guidelines are presented here. The background document and full guidelines are available as supplementary material. They include many examples to assist the laboratories in the implementation of NGS and accreditation of this service. The work and ideas presented by others in guidelines that have emerged elsewhere in the course of the past few years were also considered and are acknowledged in the full text. Interestingly, a few new insights that have not been cited before have emerged during the preparation of the guidelines. The most important new feature is the presentation of a ‘rating system’ for NGS-based diagnostic tests. The guidelines and statements have been applauded by the genetic diagnostic community, and thus seem to be valuable for the harmonization and quality assurance of NGS diagnostics in Europe.

2019 ◽  
Vol 221 (Supplement_3) ◽  
pp. S289-S291 ◽  
Author(s):  
Mariana Leguia ◽  
Anton Vila-Sanjurjo ◽  
Patrick S G Chain ◽  
Irina Maljkovic Berry ◽  
Richard G Jarman ◽  
...  

Abstract This brief report serves as an introduction to a supplement of the Journal of Infectious Diseases entitled “Next-Generation Sequencing (NGS) Technologies to Advance Global Infectious Disease Research.” We briefly discuss the history of NGS technologies and describe how the techniques developed during the past 40 years have impacted our understanding of infectious diseases. Our focus is on the application of NGS in the context of pathogen genomics. Beyond obvious clinical and public health applications, we also discuss the challenges that still remain within this rapidly evolving field.


Biology ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 295
Author(s):  
Girum Fitihamlak Ejigu ◽  
Jaehee Jung

Next-Generation Sequencing (NGS) has made it easier to obtain genome-wide sequence data and it has shifted the research focus into genome annotation. The challenging tasks involved in annotation rely on the currently available tools and techniques to decode the information contained in nucleotide sequences. This information will improve our understanding of general aspects of life and evolution and improve our ability to diagnose genetic disorders. Here, we present a summary of both structural and functional annotations, as well as the associated comparative annotation tools and pipelines. We highlight visualization tools that immensely aid the annotation process and the contributions of the scientific community to the annotation. Further, we discuss quality-control practices and the need for re-annotation, and highlight the future of annotation.


2018 ◽  
Vol 21 (1) ◽  
pp. 73-76 ◽  
Author(s):  
U Fahrioğlu

Abstract Dear Editor Next generation sequencing (NGS) has changed the way we approach the diagnosis, prognosis and treatment of genetic disorders. It gave us base pair (bp) precision, multi-gene approach that can be executed in a timely and cost-effective manner. Despite some minor technical issues in NGS, it comes with great advantages. However, the clinical, and especially, genetic counseling profession will need to rise to the challenge to face some of the new issues, dilemmas and problems this new technology is bringing to the table. Some of the counseling guidelines predate the NGS era and will urgently need to be brought up to par with the technology.


2014 ◽  
Vol 42 (S1) ◽  
pp. 5-8 ◽  
Author(s):  
David Kaufman ◽  
Margaret Curnutte ◽  
Amy L. McGuire

In 1996, President Clinton offered a promissory vision for human genetics when he said: “I think it won't be too many years before parents will be able to go home from the hospital with their newborn babies with a genetic map in their hands that will tell them, here's what your child's future will likely be like.”The rapid evolution of genetic sequencing technologies has advanced that vision. In October 2006, the cost of sequencing an entire human genome was $10.4 million; by 2014 the cost had decreased a thousand fold. The term next generation sequencing (NGS) describes a variety of laboratory methods that allow efficient determination of the precise order of nucleotides in a DNA sequence. The papers in this issue of the Journal of Law, Medicine & Ethics focus on “clinical NGS,” which refers to rapid DNA sequencing using second-, third- and fourth-generation sequencing technologies to perform genome-wide sequencing of multiple genes or alleles for clinical prognostic, diagnostic, and therapeutic purposes.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jalilah Arijah Mohd Kamarudin ◽  
Afnizanfaizal Abdullah ◽  
Roselina Sallehuddin

In the past decade it has become increasingly the effort for researcher to surpass the bioinformatics challenges foremost in next generation sequencing (NGS). This review paper gives an overview of the computational software and bioinformatics model that has been used for next generation sequencing. In this paper, the description on functionalities, source type and website of the program or software are provided. These computational software and bioinformatics model are differentiating into three types of bioinformatics analysis stages including alignment, variant calling and filtering and annotation. Besides, we discuss the future work and the development for new bioinformatics tool to be advanced.


Sign in / Sign up

Export Citation Format

Share Document