scholarly journals Growth in early life and the development of obesity by age 9 years: are there critical periods and a role for an early life stressor?

2013 ◽  
Vol 37 (4) ◽  
pp. 513-519 ◽  
Author(s):  
L C Giles ◽  
M J Whitrow ◽  
A R Rumbold ◽  
C E Davies ◽  
B de Stavola ◽  
...  
Author(s):  
Robert M. Post

This chapter reviews the neurochemistry and epigenetics of posttraumatic stress disorder (PTSD). Traditional views of the neurochemistry of PTSD focus on alterations in classical central nervous system neurotransmitters serotonin and norepinephrine and pathological reactivity in the hypothalamic-pituitary-adrenal axis, and these are only briefly noted here. Instead, the chapter emphasizes a series of new conceptualizations and neurochemical data that have recently been elucidated. One is the recognition of the symptoms and neurobiology of PTSD as a moving target, being very different in different stages of illness evolution. Differences are apparent in the neurochemistry involved in early life stressor-related vulnerabilities to PTSD, the acute stress reaction, compensation and resolution phases, or ongoing chronicity with sleep disturbance, nightmares, flashbacks, hyperarousal, and dulling and depression. The neurochemical abnormalities vary as a function of this temporal unfolding and the common acquisition and progression of comorbid syndromes of alcohol and substance abuse.


2020 ◽  
Vol 118 ◽  
pp. 654-668
Author(s):  
Stefania Ciafrè ◽  
Giampiero Ferraguti ◽  
Antonio Greco ◽  
Antonella Polimeni ◽  
Massimo Ralli ◽  
...  

2019 ◽  
Author(s):  
Florencia Torche

The idea that early-life circumstances shape people’s health, development, and well-being over the life course has gained renewed centrality in the last two decades. This renewed interest has been informed by new approaches that emphasize sensitive and critical periods during the first years of life, offer an understanding of human development as a hierarchical and cross-fertilizing process, suggest plausible mechanisms for the persistent effect of early exposures, and explore heterogeneity in effects based on environmental and biological factors. The articles included in this special issue of Population Research and Policy Review advance the field of early-life circumstances in several important dimensions. They examine the determinants and effects of noxious exposures at different developmental stages—ranging from the prenatal period to adolescence—in a variety of national settings. They offer an understanding of early-life circumstances that moves from discrete outcomes to a dynamic life-course approach, and consider diverse sources of heterogeneity in the effects of early exposures.


2019 ◽  
Author(s):  
Autumn S. Ivy ◽  
Tim Yu ◽  
Enikö Kramár ◽  
Sonia Parievsky ◽  
Fred Sohn ◽  
...  

AbstractAerobic exercise is a powerful modulator of learning and memory. Molecular mechanisms underlying the cognitive benefits of exercise are well documented in adult rodents. Animal models of exercise targeting specific postnatal periods of hippocampal development and plasticity are lacking. Here we characterize a model of early-life exercise (ELE) in male and female mice designed with the goal of identifying critical periods by which exercise may have a lasting impact on hippocampal memory and synaptic plasticity. Mice freely accessed a running wheel during three postnatal periods: the 4th postnatal week (juvenile ELE, P21-27), 6th postnatal week (adolescent ELE, P35-41), or 4th-6th postnatal weeks (juvenile-adolescent ELE, P21-41). All exercise groups significantly increased their running distances over time. When exposed to a weak learning stimulus, mice that had exercised during the juvenile period were able to form lasting long-term memory for a hippocampus-dependent spatial memory task. Electrophysiological experiments revealed enhanced long-term potentiation in hippocampal CA1 the juvenile-adolescent ELE group only. Furthermore, basal synaptic transmission was significantly increased in all mice that exercised during the juvenile period. Our results suggest early-life exercise can enable hippocampal memory, synaptic plasticity, and basal synaptic physiology when occurring during postnatal periods of hippocampal maturation.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Elizabeth M. Hill ◽  
Christopher D. Howard ◽  
Tracy L. Bale ◽  
Eldin Jašarević

Abstract Background For more than 30 years, the tetracycline on/off system of inducible gene expression has been leveraged to study disease mechanisms across many research areas, especially that of metabolism and neuroscience. This system requires acute or chronic exposure to tetracycline derivatives, such as doxycycline, to manipulate gene expression in a temporal and tissue-specific manner, with exposure often being restricted to gestational and early developmental windows. Despite evidence showing that early life antibiotic exposure has adverse effects on gut microbiota, metabolism, physiology, immunity and behavior, little is known regarding the lasting impact of doxycycline treatment on relevant outcomes in experimental offspring. Results To examine the hypothesis that early life doxycycline exposure produces effects on offspring growth, behavior, and gut microbiota, we employed the most commonly used method for tetracycline on/off system by administering a low dose of doxycycline (0.5 mg/ml) in the drinking water to C57Bl/6J and C57BL/6J:129S1/SvImJ dams from embryonic day 15.5 to postnatal day 28. Developmental exposure to low dose doxycycline resulted in significant alterations to growth trajectories and body weight in both strains, which persisted beyond cessation of doxycycline exposure. Developmental doxycycline exposure influenced offspring bacterial community assembly in a temporal and sex-specific manner. Further, gut microbiota composition failed to recover by adulthood, suggesting a lasting imprint of developmental antibiotic exposure. Conclusions Our results demonstrated that early life doxycycline exposure shifts the homeostatic baseline of prior exposed animals that may subsequently impact responses to experimental manipulations. These results highlight the gut microbiota as an important factor to consider in systems requiring methods of chronic antibiotic administration during pregnancy and critical periods of postnatal development.


2020 ◽  
Vol 10 (3) ◽  
pp. 169 ◽  
Author(s):  
Panagiota Pervanidou ◽  
Gerasimos Makris ◽  
George Chrousos ◽  
Agorastos Agorastos

Traumatic stress exposure during critical periods of development may have essential and long-lasting effects on the physical and mental health of individuals. Two thirds of youth are exposed to potentially traumatic experiences by the age of 17, and approximately 5% of adolescents meet lifetime criteria for posttraumatic stress disorder (PTSD). The role of the stress system is the maintenance of homeostasis in the presence of real/perceived and acute/chronic stressors. Early-life stress (ELS) has an impact on neuronal brain networks involved in stress reactions, and could exert a programming effect on glucocorticoid signaling. Studies on pediatric PTSD reveal diverse neuroendocrine responses to adverse events and related long-term neuroendocrine and epigenetic alterations. Neuroendocrine, neuroimaging, and genetic studies in children with PTSD and ELS experiences are crucial in understanding risk and resilience factors, and also the natural history of PTSD.


2015 ◽  
Vol 7 (1) ◽  
pp. 15-24 ◽  
Author(s):  
J. G. Wallace ◽  
W. Gohir ◽  
D. M. Sloboda

The rise in the occurrence of obesity to epidemic proportions has made it a global concern. Great difficulty has been experienced in efforts to control this growing problem with lifestyle interventions. Thus, attention has been directed to understanding the events of one of the most critical periods of development, perinatal life. Early life adversity driven by maternal obesity has been associated with an increased risk of metabolic disease and obesity in the offspring later in life. Although a mechanistic link explaining the relationship between maternal and offspring obesity is still under investigation, the gut microbiota has come forth as a new factor that may play a role modulating metabolic function of both the mother and the offspring. Emerging evidence suggests that the gut microbiota plays a much larger role in mediating the risk of developing non-communicable disease, including obesity and metabolic dysfunction in adulthood. With the observation that the early life colonization of the neonatal and postnatal gut is mediated by the perinatal environment, the number of studies investigating early life gut microbial establishment continues to grow. This paper will review early life gut colonization in experimental animal models, concentrating on the role of the early life environment in offspring gut colonization and the ability of the gut microbiota to dictate risk of disease later in life.


Sign in / Sign up

Export Citation Format

Share Document