scholarly journals Species sorting affects bacterioplankton community composition as determined by 16S rDNA and 16S rRNA fingerprints

2010 ◽  
Vol 4 (6) ◽  
pp. 729-738 ◽  
Author(s):  
Jürg B Logue ◽  
Eva S Lindström
2017 ◽  
Vol 5 (1) ◽  
pp. 72-80
Author(s):  
Umesh Prasad Shrivastava

The rhizobacteria were isolated from rhizosphere of rice plant of different fields of 4 districts of Nepal and 5 districts of Bihar and Uttar Pradesh, adjoining states of India with Nepal. The DGGE analysis was performed for diversity analysis. For the construction of dendrogram, 16S rRNA gene was amplified by two different sets of primers. The DGGE ladder consisting of PCR amplified products of nine pure bacterial cultures were obtained. The first DGGE ladder was prepared by 400 bp fragment of 16S rDNA with GC clamp and the second DGGE ladder was prepared with 200 bp fragment of 16S rDNA with GC clamp. The perpendicular DGGE of these amplicons based on their melting behavior clearly demonstrated separation of different isolates. The 16S rDNA fragment amplified with primer set of V2-V3 regions with GC clamp showed separation between 40-60% of denaturant. The DGGE profile based on primer set F352T and 519r for various bacteria present in soil samples of 5 districts of India and 4 districts of Nepal revealed that the number of bands which might be specific for diazotrophic isolates varied from 2 to 11. The dendrogram constructed based on DGGE profile of various samples of 5 districts of India and 4 districts of Nepal showed that all the samples could be clustered in nine groups with 58-96% similarity to each other. Among all these 37 samples, only Var-4 and Var-5 showed 100% similarity, no other samples from any site showed 100% similarity. Int. J. Appl. Sci. Biotechnol. Vol 5(1): 72-80


1998 ◽  
Vol 64 (9) ◽  
pp. 3520-3524 ◽  
Author(s):  
O. Mario Aguilar ◽  
María Verónica López ◽  
Pablo M. Riccillo ◽  
Ramón A. González ◽  
Marcela Pagano ◽  
...  

ABSTRACT A collection of rhizobial isolates from nodules of wild beans,Phaseolus vulgaris var. aborigineus, found growing in virgin lands in 17 geographically separate sites in northwest Argentina was characterized on the basis of host range, growth, hybridization to a nifH probe, analysis of genes coding for 16S rRNA (16S rDNA), DNA fingerprinting, and plasmid profiles. Nodules in field-collected wild bean plants were largely dominated by rhizobia carrying the 16S rDNA allele of Rhizobium etli. A similar prevalence of the R. etli allele was observed among rhizobia trapped from nearby soil. Intragroup diversity of wild bean isolates with either R. etli-like or Rhizobium leguminosarum bv. phaseoli-like alleles was generally found across northwest Argentina. The predominance of the R. etliallele suggests that in this center of origin of P. vulgaris the coevolution of Rhizobium spp. and primitive beans has resulted in this preferential symbiotic association.


2021 ◽  
Author(s):  
Michelle Miguel ◽  
Seon Ho Kim ◽  
Sang Suk Lee ◽  
Yong Il Cho

Abstract Background Carcass decomposition is influenced by various factors such as temperature, humidity, microorganisms, invertebrates, and scavengers. Soil microbes play a significant role in the decomposition process. In this study, we investigated the changes in the bacterial community during carcass decomposition in soil with an intact microbial community and soil which was sterilized decomposed with and without oxygen access using 16s rRNA metagenomic sequencing. Results Based on the 16S rRNA metagenomic sequencing, a total of 988 operational taxonomic units (OTUs) representing 16 phyla and 533 genera were detected. The bacterial diversity varied across the based on the alpha diversity indices. The bacterial composition in the unsterilized soil – aerobic condition (U_A) and unsterilized soil – anaerobic condition (U_An) set-ups have higher alpha diversity than the other burial set-ups. Beta diversity analysis revealed a close association in the samples according to the burial type and decomposition day. Firmicutes was the dominant phylum across all samples regardless of the burial type and decomposition day. The bacterial community composition changed throughout the decomposition process in all burial set-up. Meanwhile, the genus Bacillus dominated the bacterial community towards the end of decomposition period. Conclusions Our results showed that bacterial community composition changed during carcass decomposition and was affected by the soil and oxygen access, with microorganisms belonging to phylum Firmicutes dominating the community.


2017 ◽  
Vol 36 (10) ◽  
pp. 106-114 ◽  
Author(s):  
Wei Zhao ◽  
Jingjing Wang ◽  
Yajie Liang ◽  
Zhiyong Huang

2014 ◽  
Vol 80 (19) ◽  
pp. 6004-6012 ◽  
Author(s):  
Karoline Wagner ◽  
Mia M. Bengtsson ◽  
Katharina Besemer ◽  
Anna Sieczko ◽  
Nancy R. Burns ◽  
...  

ABSTRACTHeadwater streams are tightly connected with the terrestrial milieu from which they receive deliveries of organic matter, often through the hyporheic zone, the transition between groundwater and streamwater. Dissolved organic matter (DOM) from terrestrial sources (that is, allochthonous) enters the hyporheic zone, where it may mix with DOM fromin situproduction (that is, autochthonous) and where most of the microbial activity takes place. Allochthonous DOM is typically considered resistant to microbial metabolism compared to autochthonous DOM. The composition and functioning of microbial biofilm communities in the hyporheic zone may therefore be controlled by the relative availability of allochthonous and autochthonous DOM, which can have implications for organic matter processing in stream ecosystems. Experimenting with hyporheic biofilms exposed to model allochthonous and autochthonous DOM and using 454 pyrosequencing of the 16S rRNA (targeting the “active” community composition) and of the 16S rRNA gene (targeting the “bulk” community composition), we found that allochthonous DOM may drive shifts in community composition whereas autochthonous DOM seems to affect community composition only transiently. Our results suggest that priority effects based on resource-driven stochasticity shape the community composition in the hyporheic zone. Furthermore, measurements of extracellular enzymatic activities suggest that the additions of allochthonous and autochthonous DOM had no clear effect on the function of the hyporheic biofilms, indicative of functional redundancy. Our findings unravel possible microbial mechanisms that underlie the buffering capacity of the hyporheic zone and that may confer stability to stream ecosystems.


2019 ◽  
Vol 11 (8) ◽  
pp. 2229
Author(s):  
Yuanping Li ◽  
Yanrong Chen ◽  
Yaoning Chen ◽  
Yanxin Wu ◽  
Chun Zhang ◽  
...  

The objective of this study was to investigate the influence of physico-chemical parameters on Actinomycetes communities and to prioritize those parameters that contributed to Actinomycetes community composition during the composting of agricultural waste. Denaturing gradient gel electrophoresis of polymerase chain reaction (PCR-DGGE) and redundancy analysis (RDA) were used to determine the relationships between those parameters and Actinomycetes community composition. Quantitative PCR (qPCR) and regression analysis were used to monitor the 16S rDNA copy numbers of Actinomycetes and to analyse the correlations between physico-chemical parameters and Actinomyces 16S rDNA gene abundance, respectively. The RDA results showed that moisture content, water soluble carbon (WSC) and pH (p < 0.05) made the main contributions to the temporal variations of Actinomycetes community composition. The output of the regression analysis indicated that moisture content (R2 = 0.407, p < 0.01) showed a negative linear relationship with the Actinomyces 16S rDNA gene abundance.


2019 ◽  
Vol 85 (7) ◽  
Author(s):  
Alexander Burkert ◽  
Thomas A. Douglas ◽  
Mark P. Waldrop ◽  
Rachel Mackelprang

ABSTRACTPermafrost hosts a community of microorganisms that survive and reproduce for millennia despite extreme environmental conditions, such as water stress, subzero temperatures, high salinity, and low nutrient availability. Many studies focused on permafrost microbial community composition use DNA-based methods, such as metagenomics and 16S rRNA gene sequencing. However, these methods do not distinguish among active, dead, and dormant cells. This is of particular concern in ancient permafrost, where constant subzero temperatures preserve DNA from dead organisms and dormancy may be a common survival strategy. To circumvent this, we applied (i) LIVE/DEAD differential staining coupled with microscopy, (ii) endospore enrichment, and (iii) selective depletion of DNA from dead cells to permafrost microbial communities across a Pleistocene permafrost chronosequence (19,000, 27,000, and 33,000 years old). Cell counts and analysis of 16S rRNA gene amplicons from live, dead, and dormant cells revealed how communities differ between these pools, how they are influenced by soil physicochemical properties, and whether they change over geologic time. We found evidence that cells capable of forming endospores are not necessarily dormant and that members of the classBacilliwere more likely to form endospores in response to long-term stressors associated with permafrost environmental conditions than members of theClostridia, which were more likely to persist as vegetative cells in our older samples. We also found that removing exogenous “relic” DNA preserved within permafrost did not significantly alter microbial community composition. These results link the live, dead, and dormant microbial communities to physicochemical characteristics and provide insights into the survival of microbial communities in ancient permafrost.IMPORTANCEPermafrost soils store more than half of Earth’s soil carbon despite covering ∼15% of the land area (C. Tarnocai et al., Global Biogeochem Cycles 23:GB2023, 2009, https://doi.org/10.1029/2008GB003327). This permafrost carbon is rapidly degraded following a thaw (E. A. G. Schuur et al., Nature 520:171–179, 2015, https://doi.org/10.1038/nature14338). Understanding microbial communities in permafrost will contribute to the knowledge base necessary to understand the rates and forms of permafrost C and N cycling postthaw. Permafrost is also an analog for frozen extraterrestrial environments, and evidence of viable organisms in ancient permafrost is of interest to those searching for potential life on distant worlds. If we can identify strategies microbial communities utilize to survive in permafrost, it may yield insights into how life (if it exists) survives in frozen environments outside of Earth. Our work is significant because it contributes to an understanding of how microbial life adapts and survives in the extreme environmental conditions in permafrost terrains.


Sign in / Sign up

Export Citation Format

Share Document