scholarly journals Efflux pump genes and antimicrobial resistance of Pseudomonas aeruginosa strains isolated from lower respiratory tract infections acquired in an intensive care unit

2011 ◽  
Vol 65 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Burcin Ozer ◽  
Nizami Duran ◽  
Yusuf Onlen ◽  
Lutfu Savas
1995 ◽  
Vol 8 (1) ◽  
pp. 22-33 ◽  
Author(s):  
V G Hemming ◽  
G A Prince ◽  
J R Groothuis ◽  
G R Siber

Respiratory syncytial virus (RSV) is an important community and nosocomial respiratory pathogen for infants and young children. RSV causes especially severe disease in the prematurely born or those with chronic cardiopulmonary diseases. Elderly persons and those with T-cell deficiencies, such as bone marrow transplant recipients, are also at high risk for serious lower respiratory tract infections. To date, prevention of RSV infections by vaccination has proven elusive and no preventive drugs exist. Studies in animals and humans have shown that the lower respiratory tract can be protected from RSV infection by sufficient circulating RSV neutralizing antibody levels. Recently, an RSV hyperimmune immune globulin (RSVIG) was developed and tested for the prevention of RSV infections or reduction of disease severity. Passive immunization of high-risk children with RSVIG during the respiratory disease season effected significant reductions in RSV infections, hospitalizations, days of hospitalization, intensive care unit admissions, days in the intensive care unit, and ribavirin use. Studies in cotton rats and owl monkeys show that RSV infections can also be treated with inhalation of immune globulin at doses substantially smaller than required for parenteral treatment. Therapeutic trials of parenteral RSVIG have been completed and are pending analysis. The use of polyclonal, hyperimmune globulins and perhaps human monoclonal antibodies provides an additional approach to the prevention and perhaps the treatment of certain viral lower respiratory tract infections such as those caused by RSV.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250711
Author(s):  
Osvaldo Ulises Garay ◽  
Gonzalo Guiñazú ◽  
Wanda Cornistein ◽  
Javier Farina ◽  
Ricardo Valentini ◽  
...  

Background Inappropriate antibiotic use represents a major global threat. Sepsis and bacterial lower respiratory tract infections (LRTIs) have been linked to antimicrobial resistance, carrying important consequences for patients and health systems. Procalcitonin-guided algorithms may represent helpful tools to reduce antibiotic overuse but the financial burden is unclear. The aim of this study was to estimate the healthcare and budget impact in Argentina of using procalcitonin-guided algorithms to guide antibiotic prescription. Methods A decision tree was used to model health and cost outcomes for the Argentinean health system, over a one-year duration. Patients with suspected sepsis in the intensive care unit and hospitalized patients with LRTI were included. Model parameters were obtained from a focused, non-systematic, local and international bibliographic search, and validated by a panel of local experts. Deterministic and probabilistic sensitivity analyses were performed to analyze the uncertainty of parameters. Results The model predicted that using procalcitonin-guided algorithms would result in 734.5 [95% confidence interval (CI): 1,105.2;438.8] thousand fewer antibiotic treatment days, 7.9 [95% CI: 18.5;8.5] thousand antibiotic-resistant cases avoided, and 5.1 [95% CI: 6.7;4.2] thousand fewer Clostridioides difficile cases. In total, this would save $422.4 US dollars (USD) [95% CI: $935;$267] per patient per year, meaning cost savings of $83.0 [95% CI: $183.6;$57.7] million USD for the entire health system and $0.4 [95% CI: $0.9;$0.3] million USD for a healthcare provider with 1,000 cases per year of sepsis and LRTI patients. The sensitivity analysis showed that the probability of cost-saving for the sepsis patient group was lower than for the LRTI patient group (85% vs. 100%). Conclusions Healthcare and financial benefits can be obtained by implementing procalcitonin-guided algorithms in Argentina. Although we found results to be robust on an aggregate level, some caution must be used when focusing only on sepsis patients in the intensive care unit.


2021 ◽  
Vol 71 (5) ◽  
pp. 1590-93
Author(s):  
Naila Hamid ◽  
Muhammad Faisal Shafique ◽  
Qamar-uz-Zaman . ◽  
Hafza Niaz

Objective: To study the serum sodium levels in patients of lower respiratory tract infections admitted in the paediatric intensive care unit with their prognosis. Study Design: Prospective observational study. Place and Duration of Study: Pak Emirates Military Hospital Rawalpindi, from Jan to Jun 2018. Methodology: Eighty patients suffering from lower respiratory tract infections who were admitted to the paediatric intensive care unit were selected at consecutive sampling. The outcome was recorded in the form of discharge or mortality. Serum sodium was done at the time of admission and then periodically after every 24-48 hours. The Association of patients’ serum sodium with their prognosis was studied using chi-square test and p-value was calculated. Results: A total of 80 patients were enrolled in our study out of which 50 (62.50%) were males and 30 (37.50%) were females. Out of the total, 48 patients suffered from hyponatremia. These 48 patients had a mean serum sodium concentration of 131.24 ± 3.31 mEq/L. The mean age of patients suffering from hyponatremia was 5.78 ± 3.4 years. Mortality occurred in 5 (80.12%) of patients suffering from severe hyponatremia. Conclusion: There was a significant association of hyponatremia with mortality in children admitted in paediatric intensive care settings with lower respiratory tract infections. Therefore, proper management hence correction of serum sodium levels can improve survival in, particularly children admitted in a pediatric intensive care setting.


2021 ◽  
Vol 10 (35) ◽  
pp. 2964-2968
Author(s):  
Swetha Thirumurthi ◽  
Priya Kanagamuthu ◽  
Rajasekaran Srinivasan ◽  
Bhalaji Dhanasekaran

BACKGROUND The term tracheostomy refers to forming an opening in the trachea.1,2 Its advantages include easy and direct access to lower respiratory tract, reduced risk of aspiration, faster weaning from ventilation support and improved physical and psychological comfort. But a common problem in tracheostomised patients is increased risk of colonisation of lower respiratory tract by exogenous bacteria because of direct exposure.1,3 This study was done to recognise pathogens in tracheal secretions collected from tracheostomised patients and their antibiotic sensitivity to treat them with appropriate antibiotics. METHODS This prospective study was done in 138 tracheostomised patients from October 2020 to March 2021 in intensive care unit (ICU) of Chettinad Hospital and Research Institute. Under sterile aseptic precautions, Day 0 and Day 7 cultures posttracheostomy was obtained and their antibiotic sensitivity was studied. Data was analysed using Statistical Package for Social Sciences (SPSS version 19) and presented in proportion, mean and standard deviation (Descriptive statistics). RESULTS In this study, of the 56 cases who had growth in their culture and sensitivity reports on day 0, the most common organism was Pseudomonas aeruginosa (33.9 %) sensitive to imipenem (94.7 %) followed by klebsiella (25 %) sensitive to teicoplanin, vancomycin, amikacin, cefoperazone/tazobactam, linezolid and piperacillin/tazobactam. On day 7, the growth of organisms isolated in tracheal culture got reduced from 56 cases to 16 cases. The prevalence of Pseudomonas reduced to 18.8 % in day 7 whereas Klebsiella pneumonia and Acinetobacter remained almost same from day 0 to day 7. CONCLUSIONS This study concludes the predominant pathogen as Pseudomonas aeruginosa with sensitivity to imipenem followed by Klebsiella with sensitivity to teicoplanin, vancomycin, amikacin, cefoperazone/tazobactam, linezolid and piperacillin/tazobactam on day 0 with reduction in the number of organisms on day 7 due to the fact that all our patients were admitted in ICU several days prior to tracheostomy and were started on antibiotics soon after admission as per choice of the treating physician. Hence, a clear understanding of bacterial colonisation post tracheostomy and its change in course is essential for timely intervention with empirical antibiotics for reducing the incidence of lower respiratory tract infections after tracheostomy in future. KEY WORDS Tracheostomy, Lower Respiratory Tract Infections, Pseudomonas Aeruginosa, Empirical Antibiotics.


2019 ◽  
Vol 10 (2) ◽  
pp. 14-19 ◽  
Author(s):  
Dharm Raj Bhatta ◽  
Deependra Hamal ◽  
Rajani Shrestha ◽  
Supram HS ◽  
Pushpanjali Joshi ◽  
...  

Background: Lower respiratory tract infections are one of the most common infections among the patients in Intensive Care Units (ICUs). Admission in ICUs and use of life supporting devices increase the risk of infection with multidrug resistant pathogens. Aims and Objectives: This study was aimed to determine the prevalence and antibiograms ofthe bacterial pathogens causing lower respiratory tract infectionsamong patients of ICUs. Materials and Methods: A total of 184 specimens from patients admitted in ICUswith lower respiratory tract infections were included in this study. Isolation, identification and antibiotic susceptibility testing of the isolates was performed by standard microbiological techniques. Carbapenamase detection was performed by modified Hodge test method.Detection of metallo beta lactamase (MBL) was tested by imipenem and imipenem/EDTA disc. Detection of Klebsiellapneumoniaecarbapenamase (KPC) was performed by imipenem and imipenem/phenyl boronic acid. Results: Out of 184 samples, 131 showed significant growth of bacterial pathogens. Acinetobacter species (42.6%), Staphylococcus aureus (16.9%) and Pseudomonasaeruginosa(13.9%)were the three most common isolates. Out of 22 imipenem resistant isolates of Acientobacter species, 9 were KPC producer, 4 were MBL producers and 3 isolates were positive for MBL and KPC both. Among the Acinetobacter species, 5.1% isolates were resistant to tigecycline and colistin. One isolate of Pseudomonas aeruginosa was positive for MBL. Conclusions:High prevalence of multidrug resistant bacteria in ICUs was recorded. Gram negative bacilli were predominantly associated with LRTI among ICU patients;Acinetobacterspecies being most common isolate. Detection of carbapenamase among the Acinetobacterand emergence of tigecycline resistancelimits the therapeutic options.Regular monitoring of such resistant isolates would be important for managing infection control in critical units.


Sign in / Sign up

Export Citation Format

Share Document