scholarly journals Effects of Kininase II Inhibitors on the Vasomotor Response to Bradykinin of Feline Intracranial and Extracranial Arteries in vitro and in situ

1983 ◽  
Vol 3 (3) ◽  
pp. 339-345 ◽  
Author(s):  
Michael Wahl ◽  
Alan R. Young ◽  
Lars Edvinsson ◽  
Franz Wagner

Bradykinin is known to effect a vasodilatation of feline cerebral arteries in situ and of both human and feline pial arteries in vitro. In order to demonstrate whether kininase II (localized within the vessel wall or in the surrounding tissue or fluid) influences the response to bradykinin, two different inhibitors of this bradykinin degradation enzyme were tested. Perivascular microapplication of potentiator C (10−10–10−4 M) or captopril (10−10–10−3 M) did not, by itself, change the diameter of feline pial arteries (87–305 μm) in situ. In a similar investigation, the dilating action of bradykinin (10−8–10−5 M) was not modified by the simultaneous application of potentiator C or captopril (10−5 M). Furthermore, the relaxing effect of bradykinin (10−10–10−4 M) on isolated feline middle cerebral arteries (preconstricted with 5-hydroxytryptamine or prostaglandin F2α) was not influenced by the presence of captopril (10−7 M). In contrast, when studied on isolated extracranial vessel segments (feline sublingual artery), bradykinin caused a concentration-dependent constriction of the artery. This constriction was completely reversed to dilatation in the presence of captopril (10−7 M). Moreover, the characteristic effect of kininase II inhibition was demonstrated in the isolated guinea pig ileum preparation. In this instance, bradykinin induced a concentration-dependent contraction that was enhanced by potentiator C or captopril. We conclude, therefore, that bradykinin exerts variable responses on vascular smooth muscle, depending on the species used, the muscle location and experimental conditions. Finally, the in situ and in vitro findings for pial and middle cerebral arteries demonstrate that kininase II does not modify the dilating effect of bradykinin under our experimental conditions.

1983 ◽  
Vol 3 (2) ◽  
pp. 231-237 ◽  
Author(s):  
Michael Wahl ◽  
Alan R. Young ◽  
Lars Edvinsson ◽  
Franz Wagner

The effect of bradykinin on cerebrovascular resistance vessels was investigated by the use of in vitro and in situ preparations. Bradykinin, in the range of 10−10 to 10−5 M, elicited a concentration-dependent vasodilatation on both feline and human pial arteries in vitro; the half-maximal response was found to be approximately at 2.8 × 10−7 M and 1.3 × 10−8 M (EC50), respectively. This dilatatory effect of bradykinin in vitro was found only in arteries preconstricted with prostaglandin F2α or 5-hydroxytryptamine. In order to determine the effects of bradykinin on the diameter of cat pial arteries in situ, perivascular microapplication was employed. The dose-response curves obtained showed vasodilatation; the EC50 and the maximal response (EAm) were 4.4 × 10−7 M and 45.5% at 10−5 M, respectively. Statistically significant (p < 0.01) reactions were observed at 10−7 M and higher concentrations of bradykinin. The observed effects were independent of initial vessel size (80–260 μm). These in situ findings are very similar to those found in vitro. The isolated guinea pig ileum was used to check the stability of the bradykinin solutions. In this instance, a concentration-dependent contraction was found when “freshly prepared” or “5 hours stored” bradykinin was applied, indicating no measurable degradation of bradykinin. We conclude that bradykinin is a powerful vasodilator of both human and feline pial arteries.


1993 ◽  
Vol 13 (2) ◽  
pp. 291-297 ◽  
Author(s):  
R. Uddman ◽  
P. J. Goadsby ◽  
I. Jansen ◽  
L. Edvinsson

Pituitary adenylate cyclase activating peptide (PACAP) is a vasoactive intestinal polypeptide (VIP)–like peptide recently isolated from ovine hypothalami. Nerve fibers containing PACAP immunoreactivity were present in the adventitia and the adventitia-media border of cat cerebral arteries. Double immunostaining revealed that PACAP-immunoreactive nerve fibers constituted a sub-population of the VIP-containing fibers. PACAP effected a concentration-dependent relaxation of feline middle cerebral arteries that had been precontracted with prostaglandin F2α. The maximum relaxation, 24 and 34% of precontraction, was achieved with PACAP-38 and PACAP-27, respectively, at a concentration of 10−6 M. In cats anesthetized with α-chloralose, intracerebral microinjection of PACAP effected a moderate increase in cerebral blood flow. The maximal increase (18.6 ± 6%) was observed following the injection of 5 μg PACAP.


1983 ◽  
Vol 61 (7) ◽  
pp. 756-763 ◽  
Author(s):  
Paul M. Gross ◽  
A. Murray Harper ◽  
Graham M. Teasdale

We examined responses of pial arteries and veins in situ to noradrenergic stimuli in the presence of histamine. Electrical stimulation of sympathetic nerves and perivascular microapplication of norepinephrine in mock cerebrospinal fluid produced constriction of arteries and veins in anesthetized cats. During simultaneous perivascular injection of histamine, these noradrenergic responses were attenuated or reversed. In both arteries and veins, constriction from sympathetic nerve stimulation was prevented by simultaneous application of the histamine receptor agonists, pyridylethylamine (H1) or impromidine (H2), results that suggest interference involving both types of histamine receptors. In arteries, impromidine, but not pyridylethylamine, inhibited constriction resulting from exogenous norepinephrine. Our findings indicate that histamine may have an inhibitory influence, exerted through both receptor types, on noradrenergic mechanisms in cerebral vessels.


1991 ◽  
Vol 11 (1) ◽  
pp. 161-164 ◽  
Author(s):  
Mária Faragó ◽  
Csaba Szabó ◽  
Eörs Dóra ◽  
Ildikó Horváth ◽  
Arisztid G. B. Kovách

To clarify the effect of extracellular magnesium (Mg2+) on the vascular reactivity of feline isolated middle cerebral arteries, the effects of slight alterations in the Mg2+ concentration on the contractile and endothelium-dependent dilatory responses were investigated in vitro. The contractions, induced by 10−8-10−5 M norepinephrine, were significantly potentiated at low Mg2+ (0.8 m M v. the normal, 1.2 m M). High (1.6 and 2.0 m M) Mg2+ exhibited an inhibitory effect on the contractile responses. No significant changes, however, in the EC50 values for norepinephrine were found. The endothelium-dependent relaxations induced by 108–10−5 M acetylcholine were inhibited by high (1.6 and 2.0 m M) Mg2+. Lowering of the Mg2+ concentration to 0.8 m M or total withdrawal of this ion from the medium failed to alter the dilatory potency of acetylcholine. The changes in the dilatory responses also shifted the EC50 values for acetylcholine to the right. The present results show that the contractile responses of the cerebral arteries are extremely susceptible to the changes of Mg2+ concentrations. In response to contractile and endothelium-dependent dilatory agonists, Mg2+ probably affects both the calcium influx into the endothelial and smooth muscle cells as well as the binding of acetylcholine to its endothelial receptor. Since Mg2+ deficiency might facilitate the contractile but not the endothelium-dependent relaxant responses, the present study supports a role for Mg2+ deficiency in the development of the cerebral vasospasm.


2002 ◽  
Vol 283 (6) ◽  
pp. H2268-H2275 ◽  
Author(s):  
Rebecca J. Coulson ◽  
Naomi C. Chesler ◽  
Lisa Vitullo ◽  
Marilyn J. Cipolla

Passive (papaverine induced) and active (spontaneous pressure induced) biomechanical properties of ischemic and nonischemic rat middle cerebral arteries (MCAs) were studied under pressurized conditions in vitro. Ischemic (1 h of occlusion), contralateral, and sham-operated control MCAs were isolated from male Wistar rats ( n = 22) and pressurized using an arteriograph system that allowed control of transmural pressure (TMP) and measurement of lumen diameter and wall thickness. Three mechanical stiffness parameters were computed: overall passive stiffness (β), pressure-dependent modulus changes ( E inc,p), and smooth muscle cell (SMC) activity-dependent changes ( E inc,a). The β-value for ischemic vessels was increased compared with sham vessels (13.9 ± 1.7 vs. 9.1 ± 1.4, P < 0.05), indicating possible short-term remodeling due to ischemia. E inc,p increased with pressure in the passive vessels ( P < 0.05) but remained relatively constant in the active vessels for all vessel types, indicating that pressure-induced SMC contractile activity (i.e., myogenic reactivity) in cerebral arteries leads to the maintenance of a constant elastic modulus within the autoregulatory pressure range. E inc,a increased with pressure for all conditions, signifying that changes in stiffness are influenced by SMC activity and vascular tone.


1999 ◽  
Vol 276 (3) ◽  
pp. R799-R808 ◽  
Author(s):  
John Buchholz ◽  
Kim Edwards-Teunissen ◽  
Sue P. Duckles

To examine effects of development and chronic high-altitude hypoxia on sympathetic nerve function in sheep, norepinephrine release was measured in vitro from middle cerebral and facial arteries. Capsaicin was used to test the role of capsaicin-sensitive sensory nerves; norepinephrine release was not altered by capsaicin treatment. N ω-nitro-l-arginine methyl ester (l-NAME), an inhibitor of NO synthase, decreased stimulation-evoked norepinephrine release in middle cerebral arteries from normoxic sheep with no effect in hypoxic arteries or facial arteries. Thus NO-releasing nerves augmented norepinephrine release. Furthermore, the function of NO-releasing nerves declined after chronic hypoxia. Despite loss of the augmenting effects of NO, stimulation-evoked fractional norepinephrine release was unchanged after chronic hypoxia, suggesting that middle cerebral arteries adapt to hypoxia by increasing stimulation-evoked norepinephrine release. In fetal facial arteries, chronic hypoxia resulted in a decline in stimulation-evoked norepinephrine release, but there was an increase in the adult facial artery. In the adult, adaptation to chronic hypoxia is similar in both cerebral and facial arteries. However, differential adaptation in fetal adrenergic nerves may reflect differences in fetal redistribution of blood flow in the face of chronic hypoxia but could also possibly contribute to increased incidence of fetal morbidity.


1998 ◽  
Vol 275 (3) ◽  
pp. H930-H939 ◽  
Author(s):  
Sergey E. Akopov ◽  
Lubo Zhang ◽  
William J. Pearce

G protein-regulated Ca2+ sensitivity of vascular contractile proteins plays an important role in cerebrovascular reactivity. The present study examines the intracellular mechanisms that govern G protein-regulated Ca2+ sensitivity in cerebral arteries of different size and age. We studied β-escin-permeabilized segments of common carotid, basilar, and middle cerebral arteries from nonpregnant adult and near-term fetal sheep. Activation of protein kinase C (PKC) by (−)-indolactam V or a phorbol ester produced receptor-independent increases in Ca2+ sensitivity. Such increases were more marked in immature arteries and were inversely correlated with artery size in both mature and immature arteries. However, inhibitors of PKC did not significantly affect increases in Ca2+ sensitivity in responses to either serotonin (5-hydroxytryptamine, 5-HT) or guanosine 5′- O-(3-thiotriphosphate) (GTPγS). Alternatively, deactivation of rho p21, a small G protein associated with Rho kinase, by exotoxin C3 fully prevented increases in Ca2+ sensitivity in responses to 5-HT or GTPγS in both adult and fetal arteries of all types. Neither inhibitors of PKC nor exotoxin C3 altered baseline Ca2+ sensitivity. We conclude that patterns of receptor- and/or G protein-mediated modulation of Ca2+ sensitivity are dependent on an intracellular pathway that involves activation of small G proteins and Rho kinase. In contrast, PKC has little, if any, role in agonist-induced Ca2+ sensitization under the present experimental conditions.


1987 ◽  
Vol 7 (1) ◽  
pp. 45-57 ◽  
Author(s):  
L. Edvinsson ◽  
J. R. Copeland ◽  
P. C. Emson ◽  
J. McCulloch ◽  
R. Uddman

Perivascular nerve fibers containing neuropeptide Y (NPY)-like immunoreactivity were identified around cerebral blood vessels of human, cat, guinea pig, rat, and mouse. The major cerebral arteries were invested by dense plexuses; veins, small arteries, and arterioles were accompanied by few fibers. Removal of the superior cervical ganglion resulted in a reduction of NPY-like material in pial vessels and dura mater. Pretreatment with 6-hydroxydopamine or reserpine reduced the number of visible NPY fibers and the concentration of NPY in rat cerebral vessels. Sequential immuno-staining with antibodies toward dopamine-β-hydroxylase (DBH) (an enzyme involved in the synthesis of noradrenaline) and NPY revealed an identical localization of DBH and NPY in nerve cell bodies in the superior cervical ganglion and in perivascular fibers of pial blood vessels, suggesting their coexistence. Administration of NPY in vitro resulted in concentration-dependent contractions that were not modified by a sympathectomy. The contractions induced by noradrenaline, 5-hydroxytryptamine, and prostaglandin F2α and the dilator responses to calcitonin gene-related peptide were not modified by NPY in rat cerebral arteries. However, the constrictor response to NPY was reduced by 70% in the presence of the calcium entry blocker nifedipine, and abolished following incubation in a calcium-free buffer. These data suggest an interaction of NPY at a postsynaptic site, which for induction of contraction may open calcium channels in the sarcolemma of cerebral arteries.


2014 ◽  
Vol 117 (1) ◽  
pp. 53-59 ◽  
Author(s):  
Marilyn J. Cipolla ◽  
Julie Sweet ◽  
Siu-Lung Chan ◽  
Matthew J. Tavares ◽  
Natalia Gokina ◽  
...  

Brain parenchymal arterioles (PAs) are high-resistance vessels that branch off pial arteries and perfuse the brain parenchyma. PAs are the target of cerebral small vessel disease and have been shown to have greater pressure-induced tone at lower pressures than pial arteries. We investigated mechanisms by which brain PAs have increased myogenic tone compared with middle cerebral arteries (MCAs), focusing on differences in vascular smooth muscle (VSM) calcium and ion channel function. The amount of myogenic tone and VSM calcium was measured using Fura 2 in isolated and pressurized PAs and MCAs. Increases in intraluminal pressure caused larger increases in tone and cytosolic calcium in PAs compared with MCAs. At 50 mmHg, myogenic tone was 37 ± 5% for PAs vs. 6.5 ± 4% for MCAs ( P < 0.01), and VSM calcium was 200 ± 20 nmol/l in PAs vs. 104 ± 15 nmol/l in MCAs ( P < 0.01). In vessels permeabilized with Staphylococcus aureus α-toxin, PAs were not more sensitive to calcium, suggesting calcium sensitization was not at the level of the contractile apparatus. PAs were 30-fold more sensitive to the voltage-dependent calcium channel (VDCC) inhibitor nifedipine than MCAs (EC50 for PAs was 3.5 ± 0.4 vs. 82.1 ± 2.1 nmol/l for MCAs; P < 0.01); however, electrophysiological properties of the VDCC were not different in VSM. PAs had little to no response to the calcium-activated potassium channel inhibitor iberiotoxin, whereas MCAs constricted ∼15%. Thus increased myogenic tone in PAs appears related to differences in ion channel activity that promotes VSM membrane depolarization but not to a direct sensitization of the contractile apparatus to calcium.


2010 ◽  
Vol 298 (5) ◽  
pp. H1616-H1625 ◽  
Author(s):  
G. Bub ◽  
P. Camelliti ◽  
C. Bollensdorff ◽  
D. J. Stuckey ◽  
G. Picton ◽  
...  

Sarcomere length (SL) is an important determinant and indicator of cardiac mechanical function; however, techniques for measuring SL in living, intact tissue are limited. Here, we present a technique that uses two-photon microscopy to directly image striations of living cells in cardioplegic conditions, both in situ (Langendorff-perfused rat hearts and ventricular tissue slices, stained with the fluorescent marker di-4-ANEPPS) and in vitro (acutely isolated rat ventricular myocytes). Software was developed to extract SL from two-photon fluorescence image sets while accounting for measurement errors associated with motion artifact in raster-scanned images and uncertainty of the cell angle relative to the imaging plane. Monte-Carlo simulations were used to guide analysis of SL measurements by determining error bounds as a function of measurement path length. The mode of the distribution of SL measurements in resting Langendorff-perfused heart is 1.95 μm ( n = 167 measurements from N = 11 hearts) after correction for tissue orientation, which was significantly greater than that in isolated cells (1.71 μm, n = 346, N = 9 isolations) or ventricular slice preparations (1.79 μm, n = 79, N = 3 hearts) under our experimental conditions. Furthermore, we find that edema in arrested Langendorff-perfused heart is associated with a mean SL increase; this occurs as a function of time ex vivo and correlates with tissue volume changes determined by magnetic resonance imaging. Our results highlight that the proposed method can be used to monitor SL in living cells and that different experimental models from the same species may display significantly different SL values under otherwise comparable conditions, which has implications for experiment design, as well as comparison and interpretation of data.


Sign in / Sign up

Export Citation Format

Share Document