scholarly journals Ultrastructural Localization of Calcium in Ischemic Hippocampal Slices: The Influence of Adenosine and Theophylline

1992 ◽  
Vol 12 (3) ◽  
pp. 520-524 ◽  
Author(s):  
Ernö Dux ◽  
Peter Schubert ◽  
Georg W. Kreutzberg

Calcium was localized ultrastructurally with the use of the modified oxalate-pyroantimonate reaction in the CA1 region of rat hippocampal slices. Ten-minute ischemia (incubation with anoxic and glucose-free medium) followed by 30 min reoxygenation resulted in mitochondrial calcium sequestration and ultrastructural damage. The addition of the adenosine receptor antagonist, theophylline, worsened the ischemia-induced morphological changes and particularly exaggerated the Ca2+ loading in the postsynaptic dendrites. In contrast, adenosine protected against ischemia-induced changes. The results suggest that adenosine exerts its neuroprotective action largely by maintaining intracellular calcium-homeostasis.

1987 ◽  
Vol 57 (3) ◽  
pp. 869-888 ◽  
Author(s):  
I. Mody ◽  
J. D. Lambert ◽  
U. Heinemann

The effect of low extracellular Mg2+ concentration ([Mg2+]o) on neuronal activity was studied in rat hippocampal slices. After 20–40 min of perfusion with Mg2+-free medium, when [Mg2+]o declined to approximately 0.1–0.4 mM, spontaneous field potentials developed in the CA1 and CA3 regions, but not in the dentate gyrus. In the CA3 pyramidal cell layer, these potentials consisted of repetitive (0.3–0.5 Hz), 40- to 120-ms-long positive deflections (2–5 mV) with superimposed population spikes. In the stratum (str.) pyramidale of the CA1 region, positive-negative deflections (less than 3 mV) lasting for 30–80 ms were observed, which occurred with a frequency of 0.3-0.5 Hz. In some cases, longer lasting and rapidly recurring events were also observed. In CA3 pyramidal cells, the intracellular correlates of the field potential transients were 20- to 30-mV paroxysmal depolarization shifts (PDS) with superimposed bursts of action potentials, followed by large (greater than 10 mV), 500- to 1,200-ms-long afterhyperpolarizations (AHP). In contrast, pyramidal neurons of the CA1 area did not show PDSs; instead, sequences of excitatory postsynaptic potentials (EPSPs)/inhibitory postsynaptic potentials (IPSPs) accompanied the transient field potential changes. Occasionally, spontaneous EPSPs/IPSPs, occurring with high frequencies, could also be observed in CA1 without any field potential transients. In both hippocampal regions, the epileptiform activity evolved without significant alterations in the resting membrane potential (RMP) and input resistance (RN) of the neurons, although a 2- to 5-mV reduction in action potential threshold was noted. The spontaneous activity in Mg2+-free medium was readily suppressed by raising the extracellular Ca2+ concentration ([Ca2+]o) from 1.6 to 3.6 mM. The perfusion of 10-30 microns DL-2-amino-5-phosphonovaleric acid (2-APV), an antagonist for the glutamate receptors of the N-methyl-D-aspartate (NMDA) type, also attenuated or reversibly blocked the spontaneous activity. Surgical isolation of area CA1 from CA3 ceased the occurrence of the transients in CA1 but not in CA3. The synaptic input/output curves were shifted to the left in the absence of [Mg2+]o. Threshold intensity for eliciting population spikes was 50-75% of that in normal medium. Paired-pulse facilitation was still present near threshold, but was reduced at higher stimulus intensities. Decreases in [Ca2+]o, produced by repetitive stimulation (20-Hz/5-10 s) of the Schaffer collateral/commissural pathway and monitored with ion-selective microelectrodes in the CA1 region, were enhanced in Mg2+-free medium.(ABSTRACT TRUNCATED AT 400 WORDS)


2001 ◽  
Vol 114 (22) ◽  
pp. 4083-4093
Author(s):  
Yuji Ikegaya ◽  
Jeong-Ah Kim ◽  
Minami Baba ◽  
Takeshi Iwatsubo ◽  
Nobuyoshi Nishiyama ◽  
...  

Postsynaptic neuronal dendrites undergo functional and morphological changes in response to pathologically excessive synaptic activation. Although rapid formation of segmental focal swelling (varicosity) is the most prominent hallmark in such excitotoxic injury, little is known about the pathophysiological function of these structural alterations. We used cultured rat hippocampal slices to evaluate the relationship between the formation of varicosities and subsequent neuronal death. Substantial numbers of segmental dendritic varicosities were observed all over the hippocampus within 5 minutes of exposure to 30 μM NMDA, although neuronal death was detected only in the CA1 region 24 hours after NMDA exposure. Sublethal NMDA concentrations (1-10 μM) induced reversible focal swelling in all hippocampal subregions. NMDA-induced neuronal death was prevented either by NMDA receptor antagonists or by the use of Ca2+-free medium, whereas varicosity formation was virtually independent of Ca2+ influx. Rather, the Ca2+-free conditions per se produced dendritic focal swelling. Also, NMDA-induced varicosity formation was dependent on extracellular Na+ concentration. Thus, we believe that varicosity formation is not causally related to neuronal injury and that the two phenomena are separable and involve distinct mechanisms. Interestingly, dendrite swelling was accompanied by AMPA receptor internalization and a rapid, long-lasting depression in synaptic transmission. Moreover, low Na+ conditions or treatment with ethacrynic acid or proteinase inhibitors, which effectively prevent varicosity formation, aggravated NMDA-induced excitotoxicity, and eliminated the regional specificity of the toxicity. Therefore, the pathological changes in dendrite morphology and function may be associated with an early, self-protective response against excitotoxicity.


2021 ◽  
Vol 22 (15) ◽  
pp. 8091
Author(s):  
Grace Jang ◽  
M. Bruce MacIver

Ketamine is a clinical anesthetic and antidepressant. Although ketamine is a known NMDA receptor antagonist, the mechanisms contributing to antidepression are unclear. This present study examined the loci and duration of ketamine’s actions, and the involvement of NMDA receptors. Local field potentials were recorded from the CA1 region of mouse hippocampal slices. Ketamine was tested at antidepressant and anesthetic concentrations. Effects of NMDA receptor antagonists APV and MK-801, GABA receptor antagonist bicuculline, and a potassium channel blocker TEA were also studied. Ketamine decreased population spike amplitudes during application, but a long-lasting increase in amplitudes was seen during washout. Bicuculline reversed the acute effects of ketamine, but the washout increase was not altered. This long-term increase was statistically significant, sustained for >2 h, and involved postsynaptic mechanisms. A similar effect was produced by MK-801, but was only partially evident with APV, demonstrating the importance of the NMDA receptor ion channel block. TEA also produced a lasting excitability increase, indicating a possible involvement of potassium channel block. This is this first report of a long-lasting increase in excitability following ketamine exposure. These results support a growing literature that increased GABA inhibition contributes to ketamine anesthesia, while increased excitatory transmission contributes to its antidepressant effects.


1996 ◽  
Vol 210 (3) ◽  
pp. 157-160 ◽  
Author(s):  
Yukitoshi Izumi ◽  
Ann M. Benz ◽  
David B. Clifford ◽  
Charles F. Zorumski

1997 ◽  
Vol 77 (6) ◽  
pp. 3013-3020 ◽  
Author(s):  
Hiroshi Katsuki ◽  
Yukitoshi Izumi ◽  
Charles F. Zorumski

Katsuki, Hiroshi, Yukitoshi Izumi, and Charles F. Zorumski. Noradrenergic regulation of synaptic plasticity in the hippocampal CA1 region. J. Neurophysiol. 77: 3013–3020, 1997. The effects of norepinephrine (NE) and related agents on long-lasting changes in synaptic efficacy induced by several patterns of afferent stimuli were investigated in the CA1 region of rat hippocampal slices. NE (10 μM) showed little effect on the induction of long-term potentiation (LTP) triggered by theta-burst-patterned stimulation, whereas it inhibited the induction of long-term depression (LTD) triggered by 900 pulses of 1-Hz stimulation. In nontreated slices, 900 pulses of stimuli induced LTD when applied at lower frequencies (1–3 Hz), and induced LTP when applied at a higher frequency (30 Hz). NE (10 μM) caused a shift of the frequency-response relationship in the direction preferring potentiation. The effect of NE was most prominent at a stimulus frequency of 10 Hz, which induced no changes in control slices but clearly induced LTP in the presence of NE. The facilitating effect of NE on the induction of LTP by 10-Hz stimulation was blocked by theβ-adrenergic receptor antagonist timolol (50 μM), but not by the α receptor antagonist phentolamine (50 μM), and was mimicked by the β-agonist isoproterenol (0.3 μM), but not by the α1 agonist phenylephrine (10 μM). The induction of LTD by 1-Hz stimulation was prevented by isoproterenol but not by phenylephrine, indicating that the activation of β-receptors is responsible for these effects of NE. NE (10 μM) also prevented the reversal of LTP (depotentiation) by 900 pulses of 1-Hz stimulation delivered 30 min after LTP induction. In contrast to effects on naive (nonpotentiated) synapses, the effect of NE on previously potentiated synapses was only partially mimicked by isoproterenol, but fully mimicked by coapplication of phenylephrine and isoproterenol. In addition, the effect of NE was attenuated either by phentolamine or by timolol, indicating that activation of both α1 and β-receptors is required. These results show that NE plays a modulatory role in the induction of hippocampal synaptic plasticity. Althoughβ-receptor activation is essential, α1 receptor activation is also necessary in determining effects on previously potentiated synapses.


2016 ◽  
Vol 27 (8) ◽  
pp. 849-855 ◽  
Author(s):  
Nickolay K. Isaev ◽  
Elena V. Stelmashook ◽  
Elisaveta E. Genrikhs ◽  
Galina A. Korshunova ◽  
Natalya V. Sumbatyan ◽  
...  

AbstractIn 2008, using a model of compression brain ischemia, we presented the first evidence that mitochondria-targeted antioxidants of the SkQ family, i.e. SkQR1 [10-(6′-plastoquinonyl)decylrhodamine], have a neuroprotective action. It was shown that intraperitoneal injections of SkQR1 (0.5–1 μmol/kg) 1 day before ischemia significantly decreased the damaged brain area. Later, we studied in more detail the anti-ischemic action of this antioxidant in a model of experimental focal ischemia provoked by unilateral intravascular occlusion of the middle cerebral artery. The neuroprotective action of SkQ family compounds (SkQR1, SkQ1, SkQTR1, SkQT1) was manifested through the decrease in trauma-induced neurological deficit in animals and prevention of amyloid-β-induced impairment of long-term potentiation in rat hippocampal slices. At present, most neurophysiologists suppose that long-term potentiation underlies cellular mechanisms of memory and learning. They consider inhibition of this process by amyloid-β1-42as anin vitromodel of memory disturbance in Alzheimer’s disease. Further development of the above studies revealed that mitochondria-targeted antioxidants could retard accumulation of hyperphosphorylated τ-protein, as well as amyloid-β1-42, and its precursor APP in the brain, which are involved in developing neurodegenerative processes in Alzheimer’s disease.


2002 ◽  
Vol 88 (1) ◽  
pp. 107-116 ◽  
Author(s):  
David R. Ireland ◽  
Wickliffe C. Abraham

Previous studies have implicated phospholipase C (PLC)-linked Group I metabotropic glutamate receptors (mGluRs) in regulating the excitability of hippocampal CA1 pyramidal neurons. We used intracellular recordings from rat hippocampal slices and specific antagonists to examine in more detail the mGluR receptor subtypes and signal transduction mechanisms underlying this effect. Application of the Group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) suppressed slow- and medium-duration afterhyperpolarizations (s- and mAHP) and caused a consequent increase in cell excitability as well as a depolarization of the membrane and an increase in input resistance. Interestingly, with the exception of the suppression of the mAHP, these effects were persistent, and in the case of the sAHP lasting for more than 1 h of drug washout. Preincubation with the specific mGluR5 antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), reduced but did not completely prevent the effects of DHPG. However, preincubation with both MPEP and the mGluR1 antagonist LY367385 completely prevented the DHPG-induced changes. These results demonstrate that the DHPG-induced changes are mediated partly by mGluR5 and partly by mGluR1. Because Group I mGluRs are linked to PLC via G-protein activation, we also investigated pathways downstream of PLC activation, using chelerythrine and cyclopiazonic acid to block protein kinase C (PKC) and inositol 1,4,5-trisphosphate-(IP3)-activated Ca2+ stores, respectively. Neither inhibitor affected the DHPG-induced suppression of the sAHP or the increase in excitability nor did an inhibitor of PLC itself, U-73122. Taken together, these results argue that in CA1 pyramidal cells in the adult rat, DHPG activates mGluRs of both the mGluR5 and mGluR1 subtypes, causing a long-lasting suppression of the sAHP and a consequent persistent increase in excitability via a PLC-, PKC-, and IP3-independent transduction pathway.


2005 ◽  
Vol 94 (1) ◽  
pp. 247-254 ◽  
Author(s):  
Melinda M. Ramsey ◽  
Michelle M. Adams ◽  
Olusegun J. Ariwodola ◽  
William E. Sonntag ◽  
Jeff L. Weiner

Insulin-like growth factor-1 (IGF-1) and growth hormone play a major role in the growth and development of tissues throughout the mammalian body. Plasma IGF-1 concentrations peak during puberty and decline with age. We have determined that chronic treatments to restore plasma IGF-1 concentrations to adult levels attenuate spatial learning deficits in aged rats, but little is known of the acute actions of IGF-1 in the brain. To this end, we utilized hippocampal slices from young Sprague-Dawley rats to characterize the acute effects of des-IGF-1 on excitatory synaptic transmission in the CA1 region. We observed a 40% increase in field excitatory postsynaptic potential (fEPSP) slope with application of des-IGF-1 (40 ng/ml) and used whole cell patch-clamp recordings to determine that this enhancement was due to a postsynaptic mechanism involving α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate (AMPA) but not N-methyl-d-aspartate receptors. Furthermore, the enhancement was completely blocked by the broad-spectrum tyrosine kinase inhibitor, genistein (220 μM), and significantly reduced by the PI3K blockers wortmannin (1 μM) and 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (10 μM), suggesting that the effect was predominantly dependent on PI3K activation. This characterization of the acute actions of des-IGF-1 at hippocampal excitatory synapses may provide insight into the mechanism by which long-term increases in plasma IGF-1 impart cognitive benefits in aged rats. Increases in AMPA receptor-mediated synaptic transmission may contribute directly to cognitive improvement or initiate long-term changes in synthesis of proteins such as brain-derived neurotrophic factor that are important to learning and memory.


Sign in / Sign up

Export Citation Format

Share Document