scholarly journals Long-lived plasma cells are generated in mucosal immune responses and contribute to the bone marrow plasma cell pool in mice

2015 ◽  
Vol 9 (1) ◽  
pp. 83-97 ◽  
Author(s):  
A Lemke ◽  
M Kraft ◽  
K Roth ◽  
R Riedel ◽  
D Lammerding ◽  
...  
Blood ◽  
1984 ◽  
Vol 64 (2) ◽  
pp. 352-356
Author(s):  
GJ Ruiz-Arguelles ◽  
JA Katzmann ◽  
PR Greipp ◽  
NJ Gonchoroff ◽  
JP Garton ◽  
...  

The bone marrow and peripheral blood of 14 patients with multiple myeloma were studied with murine monoclonal antibodies that identify antigens on plasma cells (R1–3 and OKT10). Peripheral blood lymphocytes expressing plasma cell antigens were found in six cases. Five of these cases expressed the same antigens that were present on the plasma cells in the bone marrow. Patients that showed such peripheral blood involvement were found to have a larger tumor burden and higher bone marrow plasma cell proliferative activity. In some patients, antigens normally found at earlier stages of B cell differentiation (B1, B2, and J5) were expressed by peripheral blood lymphocytes and/or bone marrow plasma cells.


2005 ◽  
Vol 201 (6) ◽  
pp. 993-1005 ◽  
Author(s):  
Dominique Gatto ◽  
Thomas Pfister ◽  
Andrea Jegerlehner ◽  
Stephen W. Martin ◽  
Manfred Kopf ◽  
...  

Humoral immune responses are thought to be enhanced by complement-mediated recruitment of the CD21–CD19–CD81 coreceptor complex into the B cell antigen receptor (BCR) complex, which lowers the threshold of B cell activation and increases the survival and proliferative capacity of responding B cells. To investigate the role of the CD21–CD35 complement receptors in the generation of B cell memory, we analyzed the response against viral particles derived from the bacteriophage Qβ in mice deficient in CD21–CD35 (Cr2−/−). Despite highly efficient induction of early antibody responses and germinal center (GC) reactions to immunization with Qβ, Cr2−/− mice exhibited impaired antibody persistence paralleled by a strongly reduced development of bone marrow plasma cells. Surprisingly, antigen-specific memory B cells were essentially normal in these mice. In the absence of CD21-mediated costimulation, Qβ-specific post-GC B cells failed to induce the transcriptional regulators Blimp-1 and XBP-1 driving plasma cell differentiation, and the antiapoptotic protein Bcl-2, which resulted in failure to generate the precursor population of long-lived plasma cells residing in the bone marrow. These results suggest that complement receptors maintain antibody responses by delivery of differentiation and survival signals to precursors of bone marrow plasma cells.


2001 ◽  
Vol 31 (3) ◽  
pp. 939-946 ◽  
Author(s):  
Maria Pihlgren ◽  
Nadine Schallert ◽  
Chantal Tougne ◽  
Paola Bozzotti ◽  
Jiri Kovarik ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3396-3396 ◽  
Author(s):  
Robert Kyle ◽  
Ellen Remstein ◽  
Terry Therneau ◽  
Angela Dispenzieri ◽  
Paul Kurtin ◽  
...  

Abstract Smoldering multiple myeloma (SMM) is characterized by a serum M protein ≥ 3g/dL and/or 10% or more of plasma cells in the bone marrow. However, the definition is not standardized, and it is not known whether both serum M protein levels and bone marrow plasma cell counts are necessary for diagnosis or if one parameter is sufficient. We reviewed the medical records and bone marrows of all patients from Mayo Clinic seen within 30 days of recognition of an IgG or IgA M protein ≥ 3g/dL or a bone marrow containing ≥ 10% plasma cells from 1970 to 1995. This allows for a minimum potential follow-up of 10 years. Patients with end-organ damage at baseline from plasma cell proliferation, including active multiple myeloma (MM) and primary amyloidosis (AL) and those who had received chemotherapy were excluded. A differential of the bone marrow aspirate coupled with the bone marrow biopsy morphology and immunohistochemistry using antibodies directed against CD138, MUM-1 and Cyclin D1 were evaluated in every case in order to estimate the plasma cell content. In all, 301 patients fulfilled either of the criteria for SMM. Their median age was 64 years and only 3% were less than 40 years of age; 60% were male. The median hemoglobin value was 12.9 g/dL; 7% were less than 10 g/dL, but the anemia was unrelated to plasma cell proliferation. IgG accounted for 75%, IgA 22%, and biclonal proteins were found in 3%. The serum light-chain was κ in 67% and λ in 33%. The median serum M spike was 2.9 g/dL; 11% were at least 4.0 g/dL. Uninvolved serum immunoglobulins were reduced in 81%; only 1 immunoglobulin was reduced in 31% and both were decreased in 50%. The urine contained a monoclonal κ protein in 36% and λ in 18% and 46% were negative. The median size of the urine M spike was 0.04 g/24h; only 5 (3%) were > 1 g/24h. The median bone marrow plasma cell content was 15 – 19%; 10% had less than 10% plasma cells, while 10% had at least 50% plasma cells in the bone marrow. Cyclin D-1 was expressed in 17%. Patients were categorized into 3 groups: Group 1, serum M protein ≥ 3g/dL and bone marrow containing ≥ 10% plasma cells (n= 113, 38%); Group 2, bone marrow plasma cells ≥ 10% but serum M protein < 3g/dL (n= 158, 52%); Group 3, serum M protein ≥ 3g/dL but bone marrow plasma cells < 10% (n= 30, 10%). During 2,204 cumulative years of follow-up 85% died (median follow-up of those still living 10.8 years), 155 (51%) developed MM, while 7 (2%) developed AL. The overall rate of progression at 10 years was 62%; median time to progression was 5.5 yrs. The median time to progression was 2.4, 9.2, and 19 years in groups 1, 2, and 3 respectively; correspondingly at 10 years, progression occurred in 76%, 59%, and 32% respectively. Significant risk factors for progression with univariate analysis were serum M spike ≥ 4g/dL (p < 0.001), presence of IgA (p = 0.003), presence of urine light chain (p = 0.006), presence of λ urinary light chain (p = 0.002), bone marrow plasma cells ≥ 20% (p < 0.001) and reduction of uninvolved immunoglobulins (p < 0.001). The hemoglobin value, gender, serum albumin, and expression of cyclin D-1 were not of prognostic importance. On multivariate analysis, the percentage of bone marrow plasma cells was the only significant factor predicting progression to MM or AL.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5319-5319
Author(s):  
Daniela Lakomy ◽  
Stephanie Lemaire-Ewing ◽  
Cedric Rossi ◽  
Jessica Borgeot ◽  
Jean-Noël Bastie ◽  
...  

Abstract Introduction The evaluation of multiple myeloma response to treatment as defined by international guidelines is currently based on morphologic examination of bone marrow plasma cells, serum protein electrophoresis (SPEP), immunofixation electrophoresis (IFE) and serum free light chain assay. For several years new tools are available as bone marrow plasma cell immunophenotyping and the HevyliteTM assay. HevyliteTM IgA assay provides an automated evaluation of serum heavy/light chain ratio (HLC) of the involved and uninvolved immunoglobulin (Ig) (i.e. IgAΚ/IgAλ). This is particularly interesting in IgA myeloma where the use of SPEP is limited due to a frequent comigration of monoclonal IgA with other proteins. We therefore compared the IgA quantification by Hevylite™ assay and the bone marrow plasma cell immunophenotyping for response evaluation and residual disease characterisation in IgA myeloma. Methods Hevylite™ assay, SPEP, IFE were performed in eleven IgA myeloma patients at different times: after induction chemotherapy, after the consolidation phase and after autologous stem-cell transplantation (ASCT). In the same time, minimal residual disease (MRD) assessment was performed on bone marrrow by multiparameter flow cytometry (MFC). Hevylite™ assay was performed on a Binding Site SPAplus analyser (Hevylite, Binding Site, Birmingham, UK) following the manufacturer recommendations. SPE and IFE were realized on Sebia Hydrasys analyser (Sebia, Evry, France) and results were read by two experienced biologists. Results 1. We found a perfect agreement between the IFE and immunophenotyping results at each time of evaluation, for positive results as for negative results. 2. The SPEP was contributive only in two patients and in these cases it was less sensitive than IFE. In the other patients, the monoclonal IgA migrated in beta region and/or as multiple bands, making the quantitative estimation difficult. 3. In all patients, when MRD by MFC was undetectable and IFE was negative, the HLC ratio was normal. 4. In 3 patients, HLC ratio was consistent with the IFE and MRD by MFC at each time of evaluation. Nevertheless, in 8 patients out of 11, while HLC ratio became normal, MRD by MFC and IFE were still positive. In all cases, the normalization of HLC ratio was followed, at the next step of evaluation, by the normalization of MFC and IFE. 5. In 5 patients, the normalization of HLC ratio occurred before ASCT, while IFE and MRD by MFC were still positive. Nevertheless, after ASCT, IFE and MRD by MFC became also negative, in accordance with the HLC ratio (Table 1). Conclusions During the evaluation of response to treatment of IgA myeloma, we observed a normalization of HLC ratio (Hevylite™ IgA assay) preceding the normalization of MRD by MFC and IFE. This could be explained by the fact that IFE and immunophenotyping provide very sensitive information but only on the monoclonal component. HLC ratio reflects the balance between the monoclonal and polyclonal Igs of involved and uninvolved isotype. A normalization of HLC ratio can be interpreted as an increasing polyclonal Ig proportion parallel with a decreasing monoclonal Ig proportion and may reflect the reconstitution of polyclonal plasma cells. If confirmed by other studies and long term follow-up, HLC ratio could be a non-invasive predictive marker of a good response in IgA myeloma. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1984 ◽  
Vol 64 (2) ◽  
pp. 352-356 ◽  
Author(s):  
GJ Ruiz-Arguelles ◽  
JA Katzmann ◽  
PR Greipp ◽  
NJ Gonchoroff ◽  
JP Garton ◽  
...  

Abstract The bone marrow and peripheral blood of 14 patients with multiple myeloma were studied with murine monoclonal antibodies that identify antigens on plasma cells (R1–3 and OKT10). Peripheral blood lymphocytes expressing plasma cell antigens were found in six cases. Five of these cases expressed the same antigens that were present on the plasma cells in the bone marrow. Patients that showed such peripheral blood involvement were found to have a larger tumor burden and higher bone marrow plasma cell proliferative activity. In some patients, antigens normally found at earlier stages of B cell differentiation (B1, B2, and J5) were expressed by peripheral blood lymphocytes and/or bone marrow plasma cells.


1999 ◽  
Vol 104 (1) ◽  
pp. 131-137 ◽  
Author(s):  
Thomas Witzig ◽  
Michael Timm ◽  
Dirk Larson ◽  
Terry Therneau ◽  
Philip Greipp

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1534-1534
Author(s):  
Fotios A. Asimakopoulos ◽  
Harold E. Varmus

Abstract Multiple myeloma (MM) is characterized by monoclonal expansion of bone marrow plasma cells. However, long-lived plasma cells resident in the marrow are terminally differentiated and possess a limited replicative lifespan; it is puzzling how they could be the source of aggressive and relapsing neoplasms. We postulate that the myeloma clonogenic progenitor may reside in a more immature compartment with greater self-renewal capacity, most probably a cell participating in, or having shortly exited the germinal center reaction. However, it is unclear whether critical mutations occur in the target cell prior to, or following commitment to the plasma cell fate. To investigate the nature of the MM cell-of-origin, we have created a novel flexible mouse model system that enables the delivery of stochastic, sequential, somatic mutations to precisely defined compartments of the germinal center in secondary lymphoid tissues. To this end, we have used BAC transgenic technology to express distinct types of avian leukosis virus (ALV) receptors, TVA and TVB, in the expanding centroblast of the dark zone and the committed plasmablast of the light zone, respectively. Mammalian tissues are refractory to transduction by retroviruses of the ALV family unless they ectopically express the cognate avian-derived receptors. Thus, the coding sequences for the TVA receptor, fused to a fluorescent protein tag were placed under the control of transcription factor A-myb, expressed in centroblasts of the dark zone. Similarly, sequences encoding a fluorescent-tagged TVB receptor were placed under the control of transcription factor Blimp1, expressed in the earliest committed plasmablasts as well as mature plasma cells. Analysis of the Blimp1: TVB mice showed that expression of the avian retroviral receptor in the hematopoietic system is limited to the light zone of germinal centers, extrafollicular collections of CD138+ cells in the spleen and lymph nodes as well as long-lived bone marrow plasma cells. Analysis of A-myb: TVA transgenic mice is currently underway. The system permits the introduction of a variety of molecular lesions to specific plasma cell precursors via retroviral transduction of oncogenes, shRNAs against tumor suppressor genes or inducible regulators of gene expression in an attempt to re-create the sequence of molecular lesions leading to MM in the relevant cellular context.


Blood ◽  
1999 ◽  
Vol 93 (9) ◽  
pp. 3064-3073 ◽  
Author(s):  
Angelo Vacca ◽  
Domenico Ribatti ◽  
Marco Presta ◽  
Monica Minischetti ◽  
Monica Iurlaro ◽  
...  

Abstract To assess whether the progression of plasma cell tumors is accompanied by angiogenesis and secretion of matrix-degrading enzymes, bone marrow biopsy specimens from 20 patients with monoclonal gammopathy of undetermined significance (MGUS), 18 patients with nonactive multiple myeloma (MM), and 26 patients with active MM were evaluated for their angiogenic potential and matrix-metalloproteinase (MMP) production. A fivefold increase of the factor VIII+microvessel area was measured by a planimetric method of point counting in the bone marrow of patients with active MM as compared with nonactive MM and MGUS patients (P < .01). When serum-free conditioned media (CM) of plasma cells isolated from the bone marrow of each patient were tested in vivo for their angiogenic activity in the chick embryo chorioallantoic membrane (CAM) assay, the incidence of angiogenic samples was significantly higher (P< .01) in the active MM group (76%) compared with nonactive MM (33%) and MGUS (20%) groups. Moreover, a linear correlation (P < .01) was found between the extent of vascularization of the bone marrow of a given patient and the angiogenic activity exerted in the CAM assay by the plasma cells isolated from the same bone marrow. In vitro, a significantly higher fraction of the plasma cell CM samples from the active MM group stimulated human umbilical vein endothelial cell (HUVEC) proliferation (53%, P < .01), migration (42%, P < .05), and/or monocyte chemotaxis (38%,P < .05) when compared with nonactive MM and MGUS groups (ranging between 5% and 15% of the samples). Also, immunoassay of plasma cell extracts showed significantly higher (P < .01) levels of the angiogenic basic fibroblast growth factor (FGF)-2 in the active MM patients than in nonactive MM and MGUS patients (153 ± 59, 23 ± 17, and 31 ± 18 pg FGF-2/100 μg of protein, respectively). Accordingly, neutralizing anti–FGF-2 antibody caused a significant inhibition (ranging from 54% to 68%) of the biological activity exerted on cultured endothelial cells and in the CAM assay by plasma cell CM samples from active MM patients. Finally, in situ hybridization of bone marrow plasma cells and gelatin-zymography of their CM showed that active MM patients express significantly higher (P < .01) levels of MMP-2 mRNA and protein when compared with nonactive MM and MGUS patients, whereas MMP-9 expression was similar in all groups. Taken together, these findings indicate that the progression of plasma cell tumors is accompanied by an increase of bone marrow neovascularization. This is paralleled by an increased angiogenic and invasive potential of bone marrow plasma cells, which is dependent, at least in part, by FGF-2 and MMP-2 production. Induction of angiogenesis and secretion of MMPs by plasma cells in active disease may play a role in their medullary and extramedullary dissemination, raising the hypothesis that angiostatic/anti-MMP agents may be used for therapy of MM.


Blood ◽  
2010 ◽  
Vol 116 (11) ◽  
pp. 1867-1875 ◽  
Author(s):  
Oliver Winter ◽  
Katrin Moser ◽  
Elodie Mohr ◽  
Dimitra Zotos ◽  
Henriette Kaminski ◽  
...  

Abstract Long-lived plasma cells in the bone marrow produce memory antibodies that provide immune protection persisting for decades after infection or vaccination but can also contribute to autoimmune and allergic diseases. However, the composition of the microenvironmental niches that are important for the generation and maintenance of these cells is only poorly understood. Here, we demonstrate that, within the bone marrow, plasma cells interact with the platelet precursors (megakaryocytes), which produce the prominent plasma cell survival factors APRIL (a proliferation-inducing ligand) and IL-6 (interleukin-6). Accordingly, reduced numbers of immature and mature plasma cells are found in the bone marrow of mice deficient for the thrombopoietin receptor (c-mpl) that show impaired megakaryopoiesis. After immunization, accumulation of antigen-specific plasma cells in the bone marrow is disturbed in these mice. Vice versa, injection of thrombopoietin allows the accumulation and persistence of a larger number of plasma cells generated in the course of a specific immune response in wild-type mice. These results demonstrate that megakaryocytes constitute an important component of the niche for long-lived plasma cells in the bone marrow.


Sign in / Sign up

Export Citation Format

Share Document