scholarly journals The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner

2012 ◽  
Vol 18 (6) ◽  
pp. 666-673 ◽  
Author(s):  
G Clarke ◽  
S Grenham ◽  
P Scully ◽  
P Fitzgerald ◽  
R D Moloney ◽  
...  
2021 ◽  
Vol 22 (4) ◽  
pp. 1899 ◽  
Author(s):  
Hae Jeong Park ◽  
Sang A. Kim ◽  
Won Sub Kang ◽  
Jong Woo Kim

Recent studies have reported that changes in gut microbiota composition could induce neuropsychiatric problems. In this study, we investigated alterations in gut microbiota induced by early-life stress (ELS) in rats subjected to maternal separation (MS; 6 h a day, postnatal days (PNDs) 1–21), along with changes in inflammatory cytokines and tryptophan-kynurenine (TRP-KYN) metabolism, and assessed the differences between sexes. High-throughput sequencing of the bacterial 16S rRNA gene showed that the relative abundance of the Bacteroides genus was increased and that of the Lachnospiraceae family was decreased in the feces of MS rats of both sexes (PND 56). By comparison, MS increased the relative abundance of the Streptococcus genus and decreased that of the Staphylococcus genus only in males, whereas the abundance of the Sporobacter genus was enhanced and that of the Mucispirillum genus was reduced by MS only in females. In addition, the levels of proinflammatory cytokines were increased in the colons (IFN-γ and IL-6) and sera (IL-1β) of the male MS rats, together with the elevation of the KYN/TRP ratio in the sera, but not in females. In the hippocampus, MS elevated the level of IL-1β and the KYN/TRP ratio in both male and female rats. These results indicate that MS induces peripheral and central inflammation and TRP-KYN metabolism in a sex-dependent manner, together with sex-specific changes in gut microbes.


Endocrinology ◽  
2008 ◽  
Vol 149 (10) ◽  
pp. 4892-4900 ◽  
Author(s):  
Courtney J. Rice ◽  
Curt A. Sandman ◽  
Mohammed R. Lenjavi ◽  
Tallie Z. Baram

Chronic early-life stress (ES) exerts profound acute and long-lasting effects on the hypothalamic-pituitary-adrenal system, with relevance to cognitive function and affective disorders. Our ability to determine the molecular mechanisms underlying these effects should benefit greatly from appropriate mouse models because these would enable use of powerful transgenic methods. Therefore, we have characterized a mouse model of chronic ES, which was provoked in mouse pups by abnormal, fragmented interactions with the dam. Dam-pup interaction was disrupted by limiting the nesting and bedding material in the cages, a manipulation that affected this parameter in a dose-dependent manner. At the end of their week-long rearing in the limited-nesting cages, mouse pups were stressed, as apparent from elevated basal plasma corticosterone levels. In addition, steady-state mRNA levels of CRH in the hypothalamic paraventricular nucleus of ES-experiencing pups were reduced, without significant change in mRNA levels of arginine vasopressin. Rearing mouse pups in this stress-provoking cage environment resulted in enduring effects: basal plasma corticosterone levels were still increased, and CRH mRNA levels in paraventricular nucleus remained reduced in adult ES mice, compared with those of controls. In addition, hippocampus-dependent learning and memory functions were impaired in 4- to 8-month-old ES mice. In summary, this novel, robust model of chronic early life stress in the mouse results in acute and enduring neuroendocrine and cognitive abnormalities. This model should facilitate the examination of the specific genes and molecules involved in the generation of this stress as well as in its consequences.


2021 ◽  
Author(s):  
Jielong Guo ◽  
Xue Han ◽  
Yilin You ◽  
Weidong Huang ◽  
Zhan Jicheng

Abstract BackgroundLow-dose antibiotic contamination in animal food is still a severe food safety problem worldwide. Penicillin is one of the main classes of antibiotics being detected in food. Previous studies have shown that transient exposure of low-dose penicillin (LDP) during early life resulted in metabolic syndrome (MetS) in mice. However, the underlying mechanism(s) and efficient approaches to counteracting this are largely unknown.MethodsWild-type (WT) or secretory IgA (SIgA)-deficient (Pigr-/-) C57BL/6 mice were exposed to LDP or not from several days before birth to 30 d of age. Five times of FMT or probiotics (a mixture of Lactobacillus bulgaricus and L. rhamnosus GG) treatments were applied to parts of these LDP-treated mice from 12 d to 28 d of life. Bacterial composition from different regions (mucosa and lumen) of the colon and ileum were analyzed through 16S rDNA sequencing. Intestinal IgA response was analyzed. Multiple parameters related to MetS were also determined. In addition, germ-free animals and in vitro tissue culture were also used to determine the correlations between LDP, gut microbiota (GM) and intestinal IgA response.ResultsLDP disturbed the intestinal bacterial composition, especially for ileal mucosa, the main inductive and effective sites of IgA response, in 30-d-old mice. The alteration of early GM resulted in a persistent inhibition of the intestinal IgA response, leading to a constant reduction of fecal and caecal SIgA levels throughout the 25-week experiment, which is early life-dependent, as transfer of LDP-GM to 30 d germ-free mice only resulted in a transient reduction in fecal SIgA. LDP-induced reduction in SIgA led to a decrease in IgA+ bacteria and a dysbiosis in the ileal mucosal samples of 25 week wild-type but not Pigr-/- mice. Moreover, LDP also resulted in increases in ileal bacterial encroachment and adipose inflammation, along with an enhancement of diet-induced MetS in an intestinal SIgA-dependent manner. Furthermore, several times of FMT or probiotic treatments during LDP treatment are efficient to fully (for FMT) or partially (for probiotics) counteract the LDP-effect on both GM and metabolism.ConclusionsEarly-life LDP-induced enhancement of diet-induced MetS is mediated by intestinal SIgA, which could be (partially) restored by FMT or probiotics treatment.


2020 ◽  
Vol 8 (10) ◽  
pp. 1527
Author(s):  
Elizabeth M. Myles ◽  
M. Elizabeth O’Leary ◽  
Rylan Smith ◽  
Chad W. MacPherson ◽  
Alexandra Oprea ◽  
...  

The gut microbiome affects various physiological and psychological processes in animals and humans, and environmental influences profoundly impact its composition. Disorders such as anxiety, obesity, and inflammation have been associated with certain microbiome compositions, which may be modulated in early life. In 62 Long–Evans rats, we characterised the effects of lifelong Bifidobacterium longum R0175 and Lactobacillus helveticus R0052 administration—along with Western diet exposure—on later anxiety, metabolic consequences, and inflammation. We found that the probiotic formulation altered specific anxiety-like behaviours in adulthood. We further show distinct sex differences in metabolic measures. In females, probiotic treatment increased calorie intake and leptin levels without affecting body weight. In males, the probiotic seemed to mitigate the effects of Western diet on adult weight gain and calorie intake, without altering leptin levels. The greatest inflammatory response was seen in male, Western-diet-exposed, and probiotic-treated rats, which may be related to levels of specific steroid hormones in these groups. These results suggest that early-life probiotic supplementation and diet exposure can have particular implications on adult health in a sex-dependent manner, and highlight the need for further studies to examine the health outcomes of probiotic treatment in both sexes.


1998 ◽  
Vol 57 (5) ◽  
pp. 483 ◽  
Author(s):  
H. C. Kinney ◽  
D. B. Nachmanoff ◽  
L. A. Rava ◽  
J. J. Filiano

2021 ◽  
Author(s):  
Xin Zhao ◽  
Hieu Tran ◽  
Holly DeRose ◽  
Ryland C Roderick ◽  
Amanda C Kentner

While there is a strong focus on the negative consequences of maternal immune activation (MIA) on the developing brain, very little attention is directed towards potential advantages of early life challenges. In this study we utilized a polyinosine-polycytidylic acid (poly(I:C)) MIA model to test visual discrimination (VD) and reversal learning (RL) in mice using touchscreen technology. Significant sex differences emerged in that MIA improved the latency for males to make a correct choice in the VD task while females reached criterion sooner, made fewer errors and utilized fewer correction trials in RL compared to saline-treated controls. These surprising improvements were accompanied by the sex-specific upregulation of several neural markers critical to cognitive functioning (e.g., Gabrg2, Grin1, Grin2b, Htr2a, Chrm1, Prkca, and Camk2a mRNA in prefrontal cortex (PFC)), indicative of compensatory plasticity in response to the MIA challenge. In contrast, when exposed to a "two-hit" stress model (MIA combined with loss of the social component of environmental enrichment (EE)), mice showed no evidence of anhedonia but required an increased number of PD and RL correction trials. These animals also had significant reductions of CamK2a mRNA in the PFC. Appropriate functioning of synaptic plasticity, via mediators such as this protein kinase and others, are critical for behavioral flexibility. Although EE has been implicated in delaying the appearance of symptoms associated with certain brain disorders, these findings are in line with evidence that it also makes individuals more vulnerable to its loss. Overall, with the right "dose", early life stress exposure can confer at least some functional advantages, which are lost when the number or magnitude of these exposures become too great.


Sign in / Sign up

Export Citation Format

Share Document