scholarly journals Transplantation of Mesenchymal Stem Cells Overexpressing RANK-Fc or CXCR4 Prevents Bone Loss in Ovariectomized Mice

2009 ◽  
Vol 17 (11) ◽  
pp. 1979-1987 ◽  
Author(s):  
Sun Wook Cho ◽  
Hyun Jin Sun ◽  
Jae-Yeon Yang ◽  
Ju Yeon Jung ◽  
Jee Hyun An ◽  
...  
Author(s):  
Ning Zhang ◽  
Takeshi Utsunomiya ◽  
Tzuhua Lin ◽  
Yusuke Kohno ◽  
Masaya Ueno ◽  
...  

Wear particles from total joint arthroplasties (TJAs) induce chronic inflammation, macrophage infiltration and lead to bone loss by promoting bone destruction and inhibiting bone formation. Inhibition of particle-associated chronic inflammation and the associated bone loss is critical to the success and survivorship of TJAs. The purpose of this study is to test the hypothesis that polyethylene particle induced chronic inflammatory bone loss could be suppressed by local injection of NF-κB sensing Interleukin-4 (IL-4) over-expressing MSCs using the murine continuous polyethylene particle infusion model. The animal model was generated with continuous infusion of polyethylene particles into the intramedullary space of the femur for 6 weeks. Cells were locally injected into the intramedullary space 3 weeks after the primary surgery. Femurs were collected 6 weeks after the primary surgery. Micro-computational tomography (μCT), histochemical and immunohistochemical analyses were performed. Particle-infusion resulted in a prolonged pro-inflammatory M1 macrophage dominated phenotype and a decrease of the anti-inflammatory M2 macrophage phenotype, an increase in TRAP positive osteoclasts, and lower alkaline phosphatase staining area and bone mineral density, indicating chronic particle-associated inflammatory bone loss. Local injection of MSCs or NF-κB sensing IL-4 over-expressing MSCs reversed the particle-associated chronic inflammatory bone loss and facilitated bone healing. These results demonstrated that local inflammatory bone loss can be effectively modulated via MSC-based treatments, which could be an efficacious therapeutic strategy for periprosthetic osteolysis.


2013 ◽  
Vol 13 (05) ◽  
pp. 1340006 ◽  
Author(s):  
PENG SHANG ◽  
JIAN ZHANG ◽  
AIRONG QIAN ◽  
JINGBAO LI ◽  
RUI MENG ◽  
...  

Weightlessness environment (also microgravity) during the exploration of space is the major condition which must be faced by astronauts. One of the most serious adverse effects on astronauts is the weightlessness-induced bone loss due to the unbalanced bone remodeling. Bone remodeling of human beings has evolved during billions of years to make bone tissue adapt to the gravitational field of Earth (1g) and maintain skeleton structure to meet mechanical loading on Earth. However, under weightlessness environment the skeleton system no longer functions against the pull of gravity, so there is no necessity to keep bone strong enough to support the body's weight. Therefore, the balance of bone remodeling is disrupted and bone loss occurs, which is extremely deleterious to an astronaut's health during long-term spaceflight. Bone remodeling is mainly orchestrated by bone mesenchymal stem cells, osteoblasts, osteocytes, and osteoclasts. Here, we review how these bone cells respond to microgravity environment.


2013 ◽  
Vol 25 (05) ◽  
pp. 1340010 ◽  
Author(s):  
Wen-Tyng Li ◽  
Wen-Kai Hu ◽  
Feng-Ming Ho

Diabetes mellitus (DM) is associated with bone loss and leads to osteopenia and osteoporosis. This study was undertaken to investigate whether the impaired functions of mesenchymal stem cells (MSCs) derived from bone marrow play a role in pathogenesis of DM-associated bone loss. Bone marrow MSCs were taken from the alloxan-induced diabetic rats and normal rats. Bone mineral densities of tibias and femurs in diabetic rats decreased compared to those of normal rats as shown by dual energy X-ray absorptiometry. MSCs from diabetic rats exhibited reduced colony formation activity. The in vitro effects of high glucose (HG) (20 or 33 mM) on the growth, oxidative stress, apoptosis, and differentiation MSCs were next assessed. The viability and proliferation of MSCs derived from diabetic rats decreased significantly compared with that from normal rats. HG further suppressed the proliferation and viability of MSCs from both diabetic and normal rats. HG was associated with 38–40% increase in reactive oxygen species level and had significantly downregulated the activities of superoxide dismutase (SOD) and catalase (CAT) which could be recovered by the addition of L-ascorbic acid. The phenomena of apoptosis such as chromatin condensation and DNA fragmentation were found in cells cultured under HG conditions. As compared with 5.5 mM glucose, exposure of MSCs to HG enhanced adipogenic induction of triacylglycerol accumulation and inhibited osteogenic induction of alkaline phosphatase activity. HG increased peroxisome proliferator-activated receptor gamma expression during adipogenesis and reduced RUNX2 expression during osteoblastogenesis. These results indicate that MSCs derived from diabetic rats exhibited the inhibitory effects on cell growth and osteogenic ability. The oxidative stress, apoptosis, and adipogenic capability of MSCs were increased by HG. Furthermore, it is suggested that HG induces bone loss via attenuating the proliferation and osteoblastogenesis and enhancing adipogenesis mediated by the oxidative stress in rat bone marrow MSCs.


2015 ◽  
Vol 195 (11) ◽  
pp. 5136-5148 ◽  
Author(s):  
M. G. Garimella ◽  
S. Kour ◽  
V. Piprode ◽  
M. Mittal ◽  
A. Kumar ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Yujue Li ◽  
Lingyun Lu ◽  
Ying Xie ◽  
Xiang Chen ◽  
Li Tian ◽  
...  

Obesity, a chronic low-grade inflammatory state, not only promotes bone loss, but also accelerates cell senescence. However, little is known about the mechanisms that link obesity, bone loss, and cell senescence. Interleukin-6 (IL-6), a pivotal inflammatory mediator increased during obesity, is a candidate for promoting cell senescence and an important part of senescence-associated secretory phenotype (SASP). Here, wild type (WT) and (IL-6 KO) mice were fed with high-fat diet (HFD) for 12 weeks. The results showed IL-6 KO mice gain less weight on HFD than WT mice. HFD induced trabecular bone loss, enhanced expansion of bone marrow adipose tissue (BMAT), increased adipogenesis in bone marrow (BM), and reduced the bone formation in WT mice, but it failed to do so in IL-6 KO mice. Furthermore, IL-6 KO inhibited HFD-induced clone formation of bone marrow cells (BMCs), and expression of senescence markers (p53 and p21). IL-6 antibody inhibited the activation of STAT3 and the senescence of bone mesenchymal stem cells (BMSCs) from WT mice in vitro, while rescued IL-6 induced senescence of BMSCs from IL-6 KO mice through the STAT3/p53/p21 pathway. In summary, our data demonstrated that IL-6 KO may maintain the balance between osteogenesis and adipogenesis in BM, and restrain senescence of BMSCs in HFD-induced bone loss.


2020 ◽  
Author(s):  
Soichiro Sonoda ◽  
Sara Murata ◽  
Kento Nishida ◽  
Hiroki Kato ◽  
Norihisa Uehara ◽  
...  

Abstract Background: Systemic transplantation of stem cells from human exfoliated deciduous teeth (SHED) recover bone loss in animal models of osteoporosis; however, the mechanisms underlying this remain unclear. Here, we hypothesized that trophic factors within SHED-releasing extracellular vesicles (SHED-EVs) rescue osteoporotic phenotype. Methods: EVs were isolated from culture supernatant of SHED. SHED-EVs were treated with or without ribonuclease and systemically administrated into ovariectomized mice, followed by the function of recipient bone marrow mesenchymal stem cells (BMMSCs) including telomerase activity, osteoblast differentiation, and sepmaphorine-3A (SEMA3A) secretion. Subsequently, human BMMSCs were stimulated by SHED-EVs with or without ribonuclease treatment, and then human BMMSCs were examined the function of telomerase activity, osteoblast differentiation, and SEMA3A secretion. Furthermore, SHED-EVs treated human BMMSCs were subcutaneously transplanted into dorsal skin of immunocompromised mice with hydroxyapatite tricalcium phosphate (HA/TCP) careers and analyzed the de novo bone forming ability.Results: We revealed that systemic SHED-EV-infusion recovered bone volume in ovariectomized mice and improved the function of recipient BMMSCs by rescuing the mRNA levels of Tert and telomerase activity, osteoblast differentiation, and SEMA3A secretion. Ribonuclease treatment depleted RNAs, including microRNAs, within SHED-EVs and these RNA-depleted SHED-EVs attenuated SHED-EV-rescued function of recipient BMMSCs in the ovariectomized mice. These findings were supported by in vitro assays using human BMMSCs incubated with SHED-EVs. Conclusion: Collectively, our findings suggest that SHED-secreted RNAs, such as microRNAs, play a crucial role in treating postmenopausal osteoporosis by targeting the telomerase activity of recipient BMMSCs.


QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Gehane M Hamed ◽  
Noha A Nassef ◽  
Rania S.A Eissa ◽  
Mona K.E Shawky ◽  
Asmaa A Abo Zeid ◽  
...  

Abstract Background Osteoporosis is a common bone disease and is associated with considerable morbidity and mortality. Osteoporosis occurs most frequently in postmenopausal women. The inadequacy of current treatments and their side effects have driven a search for improved methods of dealing with osteoporosis. Design Experimental study. Aim of Work This study was conducted to throw light on the ability of BM-MSCs and/or PRP in improving bone formation and slow down bone loss in ovariectomized rats with osteoporosis. Materials & Methods This study was carried out on adult female Wistar rats allocated randomly into five groups: Sham-operated, OVX untreated, OVX-MSCs treated (MSCs administered once intravenously), OVX/PRP treated (PRP administered once subcutaneously), OVX-MSCs/PRP treated groups. Rats were subjected to assessment of serum ALK, CTX-1, MDA and TNF-α. In addition, specimens of tibia were taken and processed for light microscopic studies and morphometric analysis. Results OVX untreated group showed significant increases in serum levels of ALK and CTX-1. Significant elevations of serum MDA and TNF-α levels were also noticed in the OVX untreated group. Administration of BM-MSCs and PRP significantly lowered serum levels of ALK, CTX-1, MDA and TNF-α. These results were confirmed by the histopathological findings. Conclusion BM-MSCs together with PRP can partially reverse OVX-induced bone loss and halt osteoporosis progression. Abbreviations BM-MSCs: bone marrow derived mesenchymal stem cells, PRP: platelet-rich plasma, OVX: ovariectomized, ALK: alkaline phosphatase, CTX-1: cross linked c telopeptide of type 1 collagen, MDA: malondialdehyde, TNF-α: tumour necrosis factor-alpha.


2011 ◽  
pp. P1-182-P1-182
Author(s):  
Diana L Carlone ◽  
Rebecca D Riba ◽  
Dana M Ambruzs ◽  
Jessica E Sagers ◽  
David T Breault

Sign in / Sign up

Export Citation Format

Share Document