scholarly journals Sea ice and millennial-scale climate variability in the Nordic seas 90 kyr ago to present

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Ulrike Hoff ◽  
Tine L. Rasmussen ◽  
Ruediger Stein ◽  
Mohamed M. Ezat ◽  
Kirsten Fahl
2020 ◽  
Vol 117 (47) ◽  
pp. 29478-29486
Author(s):  
Henrik Sadatzki ◽  
Niccolò Maffezzoli ◽  
Trond M. Dokken ◽  
Margit H. Simon ◽  
Sarah M. P. Berben ◽  
...  

Constraining the past sea ice variability in the Nordic Seas is critical for a comprehensive understanding of the abrupt Dansgaard-Oeschger (D-O) climate changes during the last glacial. Here we present unprecedentedly detailed sea ice proxy evidence from two Norwegian Sea sediment cores and an East Greenland ice core to resolve and constrain sea ice variations during four D-O events between 32 and 41 ka. Our independent sea ice records consistently reveal a millennial-scale variability and threshold response between an extensive seasonal sea ice cover in the Nordic Seas during cold stadials and reduced seasonal sea ice conditions during warmer interstadials. They document substantial and rapid sea ice reductions that may have happened within 250 y or less, concomitant with reinvigoration of deep convection in the Nordic Seas and the abrupt warming transitions in Greenland. Our empirical evidence thus underpins the cardinal role of rapid sea ice decline and related feedbacks to trigger abrupt and large-amplitude climate change of the glacial D-O events.


2015 ◽  
Vol 30 (6) ◽  
pp. 682-701 ◽  
Author(s):  
Elsa Arellano‐Torres ◽  
Raja S. Ganeshram ◽  
Laetitia E. Pichevin ◽  
David Alberto Salas‐de‐Leon

2018 ◽  
Vol 11 (6) ◽  
pp. 2299-2314 ◽  
Author(s):  
Rubén Banderas ◽  
Jorge Alvarez-Solas ◽  
Alexander Robinson ◽  
Marisa Montoya

Abstract. Offline forcing methods for ice-sheet models often make use of an index approach in which temperature anomalies relative to the present are calculated by combining a simulated glacial–interglacial climatic anomaly field, interpolated through an index derived from the Greenland ice-core temperature reconstruction, with present-day climatologies. An important drawback of this approach is that it clearly misrepresents climate variability at millennial timescales. The reason for this is that the spatial glacial–interglacial anomaly field used is associated with orbital climatic variations, while it is scaled following the characteristic time evolution of the index, which includes orbital and millennial-scale climate variability. The spatial patterns of orbital and millennial variability are clearly not the same, as indicated by a wealth of models and data. As a result, this method can be expected to lead to a misrepresentation of climate variability and thus of the past evolution of Northern Hemisphere (NH) ice sheets. Here we illustrate the problems derived from this approach and propose a new offline climate forcing method that attempts to better represent the characteristic pattern of millennial-scale climate variability by including an additional spatial anomaly field associated with this timescale. To this end, three different synthetic transient forcing climatologies are developed for the past 120 kyr following a perturbative approach and are applied to an ice-sheet model. The impact of the climatologies on the paleo-evolution of the NH ice sheets is evaluated. The first method follows the usual index approach in which temperature anomalies relative to the present are calculated by combining a simulated glacial–interglacial climatic anomaly field, interpolated through an index derived from ice-core data, with present-day climatologies. In the second approach the representation of millennial-scale climate variability is improved by incorporating a simulated stadial–interstadial anomaly field. The third is a refinement of the second one in which the amplitudes of both orbital and millennial-scale variations are tuned to provide perfect agreement with a recently published absolute temperature reconstruction over Greenland. The comparison of the three climate forcing methods highlights the tendency of the usual index approach to overestimate the temperature variability over North America and Eurasia at millennial timescales. This leads to a relatively high NH ice-volume variability on these timescales. Through enhanced ablation, this results in too low an ice volume throughout the last glacial period (LGP), below or at the lower end of the uncertainty range of estimations. Improving the representation of millennial-scale variability alone yields an important increase in ice volume in all NH ice sheets but especially in the Fennoscandian Ice Sheet (FIS). Optimizing the amplitude of the temperature anomalies to match the Greenland reconstruction results in a further increase in the simulated ice-sheet volume throughout the LGP. Our new method provides a more realistic representation of orbital and millennial-scale climate variability and improves the transient forcing of ice sheets during the LGP. Interestingly, our new approach underestimates ice-volume variations on millennial timescales as indicated by sea-level records. This suggests that either the origin of the latter is not the NH or that processes not represented in our study, notably variations in oceanic conditions, need to be invoked to explain millennial-scale ice-volume fluctuations. We finally provide here both our derived climate evolution of the LGP using the three methods as well as the resulting ice-sheet configurations. These could be of interest for future studies dealing with the atmospheric or/and oceanic consequences of transient ice-sheet evolution throughout the LGP and as a source of climate input to other ice-sheet models.


Ocean Science ◽  
2017 ◽  
Vol 13 (4) ◽  
pp. 609-622 ◽  
Author(s):  
Céline Heuzé

Abstract. Deep water formation in climate models is indicative of their ability to simulate future ocean circulation, carbon and heat uptake, and sea level rise. Present-day temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5) models are compared with observations to assess the biases, causes and consequences of North Atlantic deep convection in models. The majority of models convect too deep, over too large an area, too often and too far south. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. Half of the models convect in response to local cooling or salinification of the surface waters; only a third have a dynamic relationship between freshwater coming from the Arctic and deep convection. The models with the most intense deep convection have the warmest deep waters, due to a redistribution of heat through the water column. For the majority of models, the variability of the Atlantic Meridional Overturning Circulation (AMOC) is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas up to 2 years before. In turn, models with the strongest AMOC have the largest heat export to the Arctic. Understanding the dynamical drivers of deep convection and AMOC in models is hence key to realistically forecasting Arctic oceanic warming and its consequences for the global ocean circulation, cryosphere and marine life.


2021 ◽  
pp. 1-40
Author(s):  
Yue Wu ◽  
David P. Stevens ◽  
Ian A. Renfrew ◽  
Xiaoming Zhai

AbstractThe ocean response to wintertime sea-ice retreat is investigated in the coupled climate model HiGEM. We focus on the marginal ice zone and adjacent waters of the Nordic Seas, where the air-sea temperature difference can be large during periods of off-ice winds promoting high heat flux events. Both control and transient climate model ensembles are examined, which allows us to isolate the ocean response due to sea-ice retreat from the response due to climate change. As the wintertime sea-ice edge retreats towards the Greenland coastline, it exposes waters that were previously covered by ice which enhances turbulent heat loss and mechanical mixing, leading to a greater loss of buoyancy and deeper vertical mixing in this location. However, under global warming, the buoyancy loss is inhibited as the atmosphere warms more rapidly than the ocean which reduces the air-sea temperature difference. This occurs most prominently further away from the retreating ice edge, over the Greenland Sea gyre. Over the gyre the upper ocean also warms significantly, resulting in a more stratified water column and, as a consequence, a reduction in the depth of convective mixing. In contrast, closer to the coast the effect of global warming is overshadowed by the effect of the sea-ice retreat, leading to significant changes in ocean temperature and salinity in the vicinity of the marginal ice zone.


2016 ◽  
Author(s):  
David A. Hodell ◽  
James E.T. Channell

Abstract. We present a 3.2-Myr record of stable isotopes and physical properties at IODP Site U1308 (re-occupation of DSDP Site 609) located within the ice-rafted detritus (IRD) belt of the North Atlantic. We compare the isotope and lithological proxies at Site U1308 with other North Atlantic records (e.g., Sites 982, 607/U1313 and U1304) to reconstruct the history of orbital and millennial-scale climate variability during the Quaternary. The Site U1308 record documents a progressive increase in the intensity of Northern Hemisphere glacial-interglacial cycles during the late Pliocene and Quaternary with mode transitions at ~ 2.7, 1.5, 0.9 and 0.65 Ma. These transitions mark times of change in the growth and stability of Northern Hemisphere ice sheets. They also coincide with increases in vertical carbon isotope gradients between the intermediate and deep ocean, suggesting changes in deep carbon storage and atmospheric CO2. Orbital and millennial climate variability co-evolved during the Quaternary such that the trend towards larger ice sheets was accompanied by changes in the style, frequency and intensity of millennial-scale variability. This co-evolution may be important for explaining the observed patterns of Quaternary climate change.


Sign in / Sign up

Export Citation Format

Share Document