scholarly journals FTO Genotype Is Associated With Exercise Training-induced Changes in Body Composition

Obesity ◽  
2010 ◽  
Vol 18 (2) ◽  
pp. 322-326 ◽  
Author(s):  
Tuomo Rankinen ◽  
Treva Rice ◽  
Margarita Teran-Garcia ◽  
Dabeeru C. Rao ◽  
Claude Bouchard
Diabetologia ◽  
2021 ◽  
Author(s):  
Trine Moholdt ◽  
Evelyn B. Parr ◽  
Brooke L. Devlin ◽  
Julia Debik ◽  
Guro Giskeødegård ◽  
...  

Abstract Aims/hypothesis We determined whether the time of day of exercise training (morning vs evening) would modulate the effects of consumption of a high-fat diet (HFD) on glycaemic control, whole-body health markers and serum metabolomics. Methods In this three-armed parallel-group randomised trial undertaken at a university in Melbourne, Australia, overweight/obese men consumed an HFD (65% of energy from fat) for 11 consecutive days. Participants were recruited via social media and community advertisements. Eligibility criteria for participation were male sex, age 30–45 years, BMI 27.0–35.0 kg/m2 and sedentary lifestyle. The main exclusion criteria were known CVD or type 2 diabetes, taking prescription medications, and shift-work. After 5 days, participants were allocated using a computer random generator to either exercise in the morning (06:30 hours), exercise in the evening (18:30 hours) or no exercise for the subsequent 5 days. Participants and researchers were not blinded to group assignment. Changes in serum metabolites, circulating lipids, cardiorespiratory fitness, BP, and glycaemic control (from continuous glucose monitoring) were compared between groups. Results Twenty-five participants were randomised (morning exercise n = 9; evening exercise n = 8; no exercise n = 8) and 24 participants completed the study and were included in analyses (n = 8 per group). Five days of HFD induced marked perturbations in serum metabolites related to lipid and amino acid metabolism. Exercise training had a smaller impact than the HFD on changes in circulating metabolites, and only exercise undertaken in the evening was able to partly reverse some of the HFD-induced changes in metabolomic profiles. Twenty-four-hour glucose concentrations were lower after 5 days of HFD compared with the participants’ habitual diet (5.3 ± 0.4 vs 5.6 ± 0.4 mmol/l, p = 0.001). There were no significant changes in 24 h glucose concentrations for either exercise group but lower nocturnal glucose levels were observed in participants who trained in the evening, compared with when they consumed the HFD alone (4.9 ± 0.4 vs 5.3 ± 0.3 mmol/l, p = 0.04). Compared with the no-exercise group, peak oxygen uptake improved after both morning (estimated effect 1.3 ml min−1 kg−1 [95% CI 0.5, 2.0], p = 0.003) and evening exercise (estimated effect 1.4 ml min−1 kg−1 [95% CI 0.6, 2.2], p = 0.001). Fasting blood glucose, insulin, cholesterol, triacylglycerol and LDL-cholesterol concentrations decreased only in participants allocated to evening exercise training. There were no unintended or adverse effects. Conclusions/interpretation A short-term HFD in overweight/obese men induced substantial alterations in lipid- and amino acid-related serum metabolites. Improvements in cardiorespiratory fitness were similar regardless of the time of day of exercise training. However, improvements in glycaemic control and partial reversal of HFD-induced changes in metabolic profiles were only observed when participants exercise trained in the evening. Trial registration anzctr.org.au registration no. ACTRN12617000304336. Funding This study was funded by the Novo Nordisk Foundation (NNF14OC0011493). Graphical abstract


2020 ◽  
Author(s):  
Eleni Kontou ◽  
Constantinos Papadopoulos ◽  
Giorgos Papadimas ◽  
Argyris Toubekis ◽  
Gregory Bogdanis ◽  
...  

Author(s):  
Lauren C. Chasland ◽  
Bu B Yeap ◽  
Andrew J. Maiorana ◽  
Yi X Chan ◽  
Barbara A Maslen ◽  
...  

As men age, serum testosterone (T) concentrations decrease, as do fitness, strength and lean mass. Whether testosterone treatment confers additive benefit to reverse these changes when combined with exercise training in middle-to-older aged men remains unclear. We assessed the effects of T treatment and exercise, alone and in combination, on aerobic capacity (VO2peak), body composition and muscular strength in men 50-70yrs, waist circumference ≥95cm and low-normal serum T (6-14nmol·L−1). Participants (n=80) were randomised to AndroForte5® (Testosterone 5.0%w/v, 100mg/2mL) cream (T), or matching placebo (P), applied transdermally daily, and supervised centre-based exercise (Ex) or no additional exercise (NEx), for 12-weeks. Exercise increased VO2peak and strength vs non-exercise (VO2peak: T+Ex:+2.5, P+Ex:+3.2mL·kg−1·min−1, P<0.001; leg press: T+Ex:+31, P+Ex:+24kg, P=0.006). T treatment did not affect VO2peak or strength. Exercise decreased total (T+Ex:-1.7, P+Ex-2.3kg, P<0.001) and visceral fat (T+Ex:-0.1, P+Ex:-0.3kg, P=0.003), and increased total (T+Ex:+1.4, P+Ex:+0.7kg, P=0.008) and arm lean mass (T+Ex:+0.5, P+Ex:+0.3kg, P=0.024). T treatment did not affect total or visceral fat, but increased total (T+Ex:+1.4, T+NEx:+0.7kg, P=0.015), leg (T+Ex:+0.3, T+NEx:+0.2kg, P=0.024) and arm lean mass (T+Ex:+0.5, T+NEx:+0.2kg, P=0.046). T+Ex increased arm lean mass (T+Ex:+0.5kg vs P+NEx:-0.0kg, P=0.001) and leg strength (T+Ex:+31 vs P+NEx:+12kg, P=0.032) compared to P+NEx, with no other additive effects. Exercise training was more effective than T treatment in increasing aerobic capacity and decreasing total and visceral fat mass. T treatment at therapeutic doses increased lean mass but conferred limited additional benefit when combined with exercise. Exercise should be evaluated as an anti-ageing intervention in preference to testosterone treatment in men.


Sign in / Sign up

Export Citation Format

Share Document