scholarly journals Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating–cancer stem cells: distinct, overlapping or same populations

Oncogene ◽  
2011 ◽  
Vol 30 (46) ◽  
pp. 4609-4621 ◽  
Author(s):  
S Floor ◽  
W C G van Staveren ◽  
D Larsimont ◽  
J E Dumont ◽  
C Maenhaut
2021 ◽  
Vol 14 (1) ◽  
pp. 60
Author(s):  
Laura Sofia Carvalho ◽  
Nélio Gonçalves ◽  
Nuno André Fonseca ◽  
João Nuno Moreira

Cancer, one of the most mortal diseases worldwide, is characterized by the gain of specific features and cellular heterogeneity. Clonal evolution is an established theory to explain heterogeneity, but the discovery of cancer stem cells expanded the concept to include the hierarchical growth and plasticity of cancer cells. The activation of epithelial-to-mesenchymal transition and its molecular players are widely correlated with the presence of cancer stem cells in tumors. Moreover, the acquisition of certain oncological features may be partially attributed to alterations in the levels, location or function of nucleolin, a multifunctional protein involved in several cellular processes. This review aims at integrating the established hallmarks of cancer with the plasticity of cancer cells as an emerging hallmark; responsible for tumor heterogeneity; therapy resistance and relapse. The discussion will contextualize the involvement of nucleolin in the establishment of cancer hallmarks and its application as a marker protein for targeted anticancer therapies


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Megan Mladinich ◽  
Diane Ruan ◽  
Chia-Hsin Chan

Cancer stem cell (CSC) has become recognized for its role in both tumorigenesis and poor patient prognosis in recent years. Traditional therapeutics are unable to effectively eliminate this group of cells from the bulk population of cancer cells, allowing CSCs to persist posttreatment and thus propagate into secondary tumors. The therapeutic potential of eliminating CSCs, to decrease tumor relapse, has created a demand for identifying mechanisms that directly target and eliminate cancer stem cells. Molecular profiling has shown that cancer cells and tumors that exhibit the CSC phenotype also express genes associated with the epithelial-to-mesenchymal transition (EMT) feature. Ample evidence has demonstrated that upregulation of master transcription factors (TFs) accounting for the EMT process such as Snail/Slug and Twist can reprogram cancer cells from differentiated to stem-like status. Despite being appealing therapeutic targets for tackling CSCs, pharmacological approaches that directly target EMT-TFs remain impossible. In this review, we will summarize recent advances in the regulation of Snail/Slug and Twist at transcriptional, translational, and posttranslational levels and discuss the clinical implication and application for EMT blockade as a promising strategy for CSC targeting.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Bing Dong ◽  
Shiyu Li ◽  
Shuangli Zhu ◽  
Ming Yi ◽  
Suxia Luo ◽  
...  

AbstractCancer stem cells (CSCs) are a small group of cancer cells, which contribute to tumorigenesis and cancer progression. Cancer cells undergoing epithelial-to-mesenchymal transition (EMT) acquire the chemoresistant ability, which is regarded as an important feature of CSCs. Thus, there emerges an opinion that the generation of CSCs is considered to be driven by EMT. In this complex process, microRNAs (miRNAs) are found to play a key role. In order to overcome the drug resistance, inhibiting EMT as well as CSCs phenotype seem feasible. Thereinto, regulating the EMT- or CSCs-associated miRNAs is a crucial approach. Herein, we conduct this review to elaborate on the complicated interplay between EMT and CSCs in cancer chemoresistance, which is modulated by miRNAs. In addition, we elucidate the therapeutic strategy to overcome drug resistance through targeting EMT and CSCs.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1833
Author(s):  
Tsai-Tsen Liao ◽  
Wei-Chung Cheng ◽  
Chih-Yung Yang ◽  
Yin-Quan Chen ◽  
Shu-Han Su ◽  
...  

Cell migration is critical for regional dissemination and distal metastasis of cancer cells, which remain the major causes of poor prognosis and death in patients with colorectal cancer (CRC). Although cytoskeletal dynamics and cellular deformability contribute to the migration of cancer cells and metastasis, the mechanisms governing the migratory ability of cancer stem cells (CSCs), a nongenetic source of tumor heterogeneity, are unclear. Here, we expanded colorectal CSCs (CRCSCs) as colonospheres and showed that CRCSCs exhibited higher cell motility in transwell migration assays and 3D invasion assays and greater deformability in particle tracking microrheology than did their parental CRC cells. Mechanistically, in CRCSCs, microRNA-210-3p (miR-210) targeted stathmin1 (STMN1), which is known for inducing microtubule destabilization, to decrease cell elasticity in order to facilitate cell motility without affecting the epithelial–mesenchymal transition (EMT) status. Clinically, the miR-210-STMN1 axis was activated in CRC patients with liver metastasis and correlated with a worse clinical outcome. This study elucidates a miRNA-oriented mechanism regulating the deformability of CRCSCs beyond the EMT process.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1239
Author(s):  
Leila Jahangiri ◽  
Tala Ishola ◽  
Perla Pucci ◽  
Ricky M. Trigg ◽  
Joao Pereira ◽  
...  

Cancer stem cells (CSCs) possess properties such as self-renewal, resistance to apoptotic cues, quiescence, and DNA-damage repair capacity. Moreover, CSCs strongly influence the tumour microenvironment (TME) and may account for cancer progression, recurrence, and relapse. CSCs represent a distinct subpopulation in tumours and the detection, characterisation, and understanding of the regulatory landscape and cellular processes that govern their maintenance may pave the way to improving prognosis, selective targeted therapy, and therapy outcomes. In this review, we have discussed the characteristics of CSCs identified in various cancer types and the role of autophagy and long noncoding RNAs (lncRNAs) in maintaining the homeostasis of CSCs. Further, we have discussed methods to detect CSCs and strategies for treatment and relapse, taking into account the requirement to inhibit CSC growth and survival within the complex backdrop of cellular processes, microenvironmental interactions, and regulatory networks associated with cancer. Finally, we critique the computationally reinforced triangle of factors inclusive of CSC properties, the process of autophagy, and lncRNA and their associated networks with respect to hypoxia, epithelial-to-mesenchymal transition (EMT), and signalling pathways.


Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1058 ◽  
Author(s):  
Gener ◽  
Rafael ◽  
Seras-Franzoso ◽  
Perez ◽  
Pindado ◽  
...  

Therapeutic resistance seen in aggressive forms of breast cancer remains challenging for current treatments. More than half of the patients suffer from a disease relapse, most of them with distant metastases. Cancer maintenance, resistance to therapy, and metastatic disease seem to be sustained by the presence of cancer stem cells (CSC) within a tumor. The difficulty in targeting this subpopulation derives from their dynamic interconversion process, where CSC can differentiate to non-CSC, which in turn de-differentiate into cells with CSC properties. Using fluorescent CSC models driven by the expression of ALDH1A 1(aldehyde dehydrogenase 1A1), we confirmed this dynamic phenotypic change in MDA-MB-231 breast cancer cells and to identify Serine/Threonine Kinase 2 (AKT2) as an important player in the process. To confirm the central role of AKT2, we silenced AKT2 expression via small interfering RNA and using a chemical inhibitor (CCT128930), in both CSC and non-CSC from different cancer cell lines. Our results revealed that AKT2 inhibition effectively prevents non-CSC reversion through mesenchymal to epithelial transition, reducing invasion and colony formation ability of both, non-CSC and CSC. Further, AKT2 inhibition reduced CSC survival in low attachment conditions. Interestingly, in orthotopic tumor mouse models, high expression levels of AKT2 were detected in circulating tumor cells (CTC). These findings suggest AKT2 as a promising target for future anti-cancer therapies at three important levels: (i) Epithelial-to-mesenchymal transition (EMT) reversion and maintenance of CSC subpopulation in primary tumors, (ii) reduction of CTC and the likelihood of metastatic spread, and (iii) prevention of tumor recurrence through inhibition of CSC tumorigenic and metastatic potential.


Sign in / Sign up

Export Citation Format

Share Document