scholarly journals Genomic and transcriptomic analyses reveal a tandem amplification unit of 11 genes and mutations in mismatch repair genes in methotrexate-resistant HT-29 cells

Author(s):  
Ahreum Kim ◽  
Jong-Yeon Shin ◽  
Jeong-Sun Seo

AbstractDHFR gene amplification is commonly present in methotrexate (MTX)-resistant colon cancer cells and acute lymphoblastic leukemia. In this study, we proposed an integrative framework to characterize the amplified region by using a combination of single-molecule real-time sequencing, next-generation optical mapping, and chromosome conformation capture (Hi-C). We identified an amplification unit spanning 11 genes, from the DHFR gene to the ATP6AP1L gene position, with high adjusted interaction frequencies on chromosome 5 (~2.2 Mbp) and a twenty-fold tandemly amplified region, and novel inversions at the start and end positions of the amplified region as well as frameshift insertions in most of the MSH and MLH genes were detected. These mutations might stimulate chromosomal breakage and cause the dysregulation of mismatch repair. Characterizing the tandem gene-amplified unit may be critical for identifying the mechanisms that trigger genomic rearrangements. These findings may provide new insight into the mechanisms underlying the amplification process and the evolution of drug resistance.

2020 ◽  
Author(s):  
Ahreum Kim ◽  
Jong-Yeon Shin ◽  
Jeong-Sun Seo

AbstractDHFR gene amplification is present in methotrexate (MTX)-resistant colon cancer cells and acute lymphoblastic leukemia. However, little is known about DHFR gene amplification due to difficulties in quantifying amplification size and recognizing the repetitive rearrangements involved in the process. In this study, we have proposed an integrative framework to characterize the amplified region by using a combination of single-molecule real time sequencing, next-generation optical mapping, and chromosome conformation capture (Hi-C). Amplification of the DHFR gene was optimized to generate homogenously amplified patterns. The amplification units of 11 genes, from the DHFR gene to the ATP6AP1L gene position on chromosome 5 (~2.2Mbp), and a twenty-fold tandemly amplified region were verified using long-range genome and RNA sequencing data. In doing so, a novel inversion at the start and end positions of the amplified region as well as frameshift insertions in most of the MSH and MLH genes were detected. These might stimulate chromosomal breakage and cause the dysregulation of mismatch repair pathways. Using Hi-C technology, high adjusted interaction frequencies were detected on the amplified unit and unsuspected position on 5q, which could have a complex network of spatial contacts to harbor gene amplification. Characterizing the tandem gene-amplified unit and genomic variants as well as chromosomal interactions on intra-chromosome 5 can be critical in identifying the mechanisms behind genomic rearrangements. These findings may give new insight into the mechanisms underlying the amplification process and evolution of drug resistance.


Genetics ◽  
1996 ◽  
Vol 144 (2) ◽  
pp. 459-466 ◽  
Author(s):  
Yingying Yang ◽  
Anthony L Johnson ◽  
Leland H Johnston ◽  
Wolfram Siede ◽  
Errol C Friedberg ◽  
...  

Abstract RAD3 functions in DNA repair and transcription in Saccharomyces cerevisiae and particular rad3 alleles confer a mutator phenotype, possibly as a consequence of defective mismatch correction. We assessed the potential involvement of the Rad3 protein in mismatch correction by comparing heteroduplex repair in isogenic rad3-1 and wild-type strains. The rad3-1 allele increased the spontaneous mutation rate but did not prevent heteroduplex repair or bias its directionality. Instead, the efficiency of mismatch correction was enhanced in the rad3-1 strain. This surprising result prompted us to examine expression of yeast mismatch repair genes. We determined that MSH2, but not MLH1, is transcriptionally regulated during the cell-cycle like PMSl, and that rad3-1 does not increase the transcript levels for these genes in log phase cells. These observations suggest that the rad3-1 mutation gives rise to an enhanced efficiency of mismatch correction via a process that does not involve transcriptional regulation of mismatch repair. Interestingly, mismatch repair also was more efficient when error-editing by yeast DNA polymerase δ was eliminated. We discuss our results in relation to possible mechanisms that may link the rad3-1 mutation to mismatch correction efficiency.


Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 133-146 ◽  
Author(s):  
Ainsley Nicholson ◽  
Miyono Hendrix ◽  
Sue Jinks-Robertson ◽  
Gray F Crouse

Abstract The Saccharomyces cerevisiae homologs of the bacterial mismatch repair proteins MutS and MutL correct replication errors and prevent recombination between homeologous (nonidentical) sequences. Previously, we demonstrated that Msh2p, Msh3p, and Pms1p regulate recombination between 91% identical inverted repeats, and here use the same substrates to show that Mlh1p and Msh6p have important antirecombination roles. In addition, substrates containing defined types of mismatches (base-base mismatches; 1-, 4-, or 12-nt insertion/deletion loops; or 18-nt palindromes) were used to examine recognition of these mismatches in mitotic recombination intermediates. Msh2p was required for recognition of all types of mismatches, whereas Msh6p recognized only base-base mismatches and 1-nt insertion/deletion loops. Msh3p was involved in recognition of the palindrome and all loops, but also had an unexpected antirecombination role when the potential heteroduplex contained only base-base mismatches. In contrast to their similar antimutator roles, Pms1p consistently inhibited recombination to a lesser degree than did Msh2p. In addition to the yeast MutS and MutL homologs, the exonuclease Exo1p and the nucleotide excision repair proteins Rad1p and Rad10p were found to have roles in inhibiting recombination between mismatched substrates.


2006 ◽  
Vol 27 (5) ◽  
pp. 1784-1794 ◽  
Author(s):  
Sudha Sharma ◽  
Deborah J. Stumpo ◽  
Adayabalam S. Balajee ◽  
Cheryl B. Bock ◽  
Peter M. Lansdorp ◽  
...  

ABSTRACT The mouse gene Recql is a member of the RecQ subfamily of DEx-H-containing DNA helicases. Five members of this family have been identified in both humans and mice, and mutations in three of these, BLM, WRN, and RECQL4, are associated with human diseases and a cellular phenotype that includes genomic instability. To date, no human disease has been associated with mutations in RECQL and no cellular phenotype has been associated with its deficiency. To gain insight into the physiological function of RECQL, we disrupted Recql in mice. RECQL-deficient mice did not exhibit any apparent phenotypic differences compared to wild-type mice. Cytogenetic analyses of embryonic fibroblasts from the RECQL-deficient mice revealed aneuploidy, spontaneous chromosomal breakage, and frequent translocation events. In addition, the RECQL-deficient cells were hypersensitive to ionizing radiation, exhibited an increased load of DNA damage, and displayed elevated spontaneous sister chromatid exchanges. These results provide evidence that RECQL has a unique cellular role in the DNA repair processes required for genomic integrity. Genetic background, functional redundancy, and perhaps other factors may protect the unstressed mouse from the types of abnormalities that might be expected from the severe chromosomal aberrations detected at the cellular level.


2015 ◽  
Vol 15 (1) ◽  
pp. 111-121 ◽  
Author(s):  
Sofia Maia ◽  
Marta Cardoso ◽  
Paula Paulo ◽  
Manuela Pinheiro ◽  
Pedro Pinto ◽  
...  

2005 ◽  
Vol 78 (2) ◽  
pp. 100-107 ◽  
Author(s):  
Hiroaki Morimoto ◽  
Junichi Tsukada ◽  
Yoshihiko Kominato ◽  
Yoshiya Tanaka

2008 ◽  
Vol 26 (35) ◽  
pp. 5783-5788 ◽  
Author(s):  
Heather Hampel ◽  
Wendy L. Frankel ◽  
Edward Martin ◽  
Mark Arnold ◽  
Karamjit Khanduja ◽  
...  

Purpose Identifying individuals with Lynch syndrome (LS) is highly beneficial. However, it is unclear whether microsatellite instability (MSI) or immunohistochemistry (IHC) should be used as the screening test and whether screening should target all patients with colorectal cancer (CRC) or those in high-risk subgroups. Patients and Methods MSI testing and IHC for the four mismatch repair proteins was performed on 500 tumors from unselected patients with CRC. If either MSI or IHC was abnormal, complete mutation analysis for the mismatch repair genes was performed. Results Among the 500 patients, 18 patients (3.6%) had LS. All 18 patients detected with LS (100%) had MSI-high tumors; 17 (94%) of 18 patients with LS were correctly predicted by IHC. Of the 18 probands, only eight patients (44%) were diagnosed at age younger than 50 years, and only 13 patients (72%) met the revised Bethesda guidelines. When these results were added to data on 1,066 previously studied patients, the entire study cohort (N = 1,566) showed an overall prevalence of 44 of 1,566 patients (2.8%; 95% CI, 2.1% to 3.8%) for LS. For each proband, on average, three additional family members carried MMR mutations. Conclusion One of every 35 patients with CRC has LS, and each has at least three relatives with LS; all of whom can benefit from increased cancer surveillance. For screening, IHC is almost equally sensitive as MSI, but IHC is more readily available and helps to direct gene testing. Limiting tumor analysis to patients who fulfill Bethesda criteria would fail to identify 28% (or one in four) cases of LS.


Sign in / Sign up

Export Citation Format

Share Document