scholarly journals Insulin suppression of fatty acid skeletal muscle enzyme activity in postmenopausal women, and improvements in metabolic flexibility and lipoprotein lipase with aerobic exercise and weight loss

2018 ◽  
Vol 43 (2) ◽  
pp. 276-284 ◽  
Author(s):  
Alice S. Ryan ◽  
Heidi K. Ortmeyer
Metabolism ◽  
2002 ◽  
Vol 51 (11) ◽  
pp. 1397-1401 ◽  
Author(s):  
Travis Beckett ◽  
Andr[eacute] Tchernof ◽  
Michael J. Toth

2021 ◽  
Vol 9 (5) ◽  
pp. 1097
Author(s):  
Labrini V. Athanasiou ◽  
Vasileios G. Papatsiros ◽  
Victoria M. Spanou ◽  
Eleni G. Katsogiannou ◽  
Anna Dedousi

Neospora caninum and Toxoplasma gondii affect both humans and animals worldwide. To investigate their seroprevalence and differences in seropositivity between pigs vaccinated and unvaccinated against porcine circovirus 2 (PCV2), as well as differences in muscle enzyme activity between seropositive and seronegative pigs, blood samples were collected from 380 sows. Antibodies against T. gondii and N. caninum were detected by an indirect immunofluorescence antibody (IFA) assay, while the activities of creatine kinase (CK) and aspartate aminotransferase (AST) were biochemically assessed. Out of the 364 sows finally included in the study, 4.4%, 3.5%, and 0.5% were seropositive to T. gondii, N. caninum, or both. A significantly higher percentage of seropositivity against T. gondii and/or N. caninum in PCV2 unvaccinated pigs compared with vaccinated pigs was observed. Increased serum activities of CK and AST were detected in 71.43% and 100% of only against T. gondii (T+) and 63.64% and 90.91% of only against N. caninum (N+) seropositive sows, respectively, and were significantly higher compared to seronegative animals. T. gondii and N. caninum seropositivity, especially in presumed immunocompromised pigs, and the evidence of muscle damage highlight their importance as a zoonotic pathogen and animal model of human infection, respectively.


2021 ◽  
Author(s):  
Ada Admin ◽  
David M Presby ◽  
Michael C Rudolph ◽  
Vanessa D Sherk ◽  
Matthew R Jackman ◽  
...  

Moderate weight loss improves numerous risk factors for cardiometabolic disease; however, long-term weight loss maintenance (WLM) is often thwarted by metabolic adaptations that suppress energy expenditure and facilitate weight regain. Skeletal muscle has a prominent role in energy homeostasis; therefore, we investigated the effect of WLM and weight regain on skeletal muscle in rodents. In skeletal muscle of obesity-prone rats, WLM reduced fat oxidative capacity and downregulated genes involved in fat metabolism. Interestingly, even after weight was regained, genes involved in fat metabolism genes were also reduced. We then subjected mice with skeletal muscle lipoprotein lipase overexpression (mCK-hLPL), which augments fat metabolism, to WLM and weight regain and found that mCK-hLPL attenuates weight regain by potentiating energy expenditure. Irrespective of genotype, weight regain suppressed dietary fat oxidation and downregulated genes involved in fat metabolism in skeletal muscle. However, mCK-hLPL mice oxidized more fat throughout weight regain and had greater expression of genes involved in fat metabolism and lower expression of genes involved in carbohydrate metabolism during WLM and regain. In summary, these results suggest that skeletal muscle fat oxidation is reduced during WLM and regain, and therapies that improve skeletal muscle fat metabolism may attenuate rapid weight regain.


1986 ◽  
Vol 18 (2) ◽  
pp. 156???161 ◽  
Author(s):  
FREDRIK CELSING ◽  
EVA BLOMSTRAND ◽  
BJ??RN WERNER ◽  
PETER PIHLSTEDT ◽  
BJ??RN EKBLOM

1991 ◽  
Vol 69 (11) ◽  
pp. 1637-1647 ◽  
Author(s):  
Gene R. Herzberg

The level of circulating triacylglycerols is determined by the balance between their delivery into the plasma and their removal from it. Plasma triacylglycerols are derived either from dietary fat as chylomicrons or from endogenous hepatic synthesis as very low density lipoproteins. Their removal occurs through the action of lipoprotein lipase after which the fatty acids are either stored in adipose tissue or oxidized, primarily in skeletal muscle and heart. The composition of the diet has been shown to influence many of these processes. Hepatic fatty acid synthesis and triacylglycerol secretion are affected by the quantity and composition of dietary fat, carbohydrate, and protein. Polyunsaturated but not saturated fats reduce hepatic fatty acid synthesis by decreasing the amount of the lipogenic enzymes needed for de novo fatty acid synthesis. Dietary fish oils are particularly effective at reducing both fatty acid synthesis and triacylglycerol secretion and as a result are hypotriacylglycerolemic, particularly in hypertriacylglycerolemic individuals. In addition, dietary fish oils can increase the oxidation of fatty acids and lead to increased activity of lipoprotein lipase in skeletal muscle and heart. It appears that the hypotriacylglycerolemic effect of dietary fish oils is mediated by effects on both synthesis and removal of circulating triacylglycerols.Key words: lipid, fish oil, fructose, liver, adipose tissue, oxidation.


Obesity ◽  
2013 ◽  
Vol 21 (7) ◽  
pp. 1350-1356 ◽  
Author(s):  
A.S. Ryan ◽  
G. Li ◽  
J.B. Blumenthal ◽  
H.K. Ortmeyer

Sign in / Sign up

Export Citation Format

Share Document