Insulin resistance rewires the metabolic gene program and glucose utilization in human white adipocytes

Author(s):  
Marie S. Isidor ◽  
Wentao Dong ◽  
Rogelio I. Servin-Uribe ◽  
Julia Villarroel ◽  
Ali Altıntaş ◽  
...  
2007 ◽  
Vol 292 (3) ◽  
pp. E654-E667 ◽  
Author(s):  
Dake Qi ◽  
Brian Rodrigues

Insulin resistance is viewed as an insufficiency in insulin action, with glucocorticoids being recognized to play a key role in its pathogenesis. With insulin resistance, metabolism in multiple organ systems such as skeletal muscle, liver, and adipose tissue is altered. These metabolic alterations are widely believed to be important factors in the morbidity and mortality of cardiovascular disease. More importantly, clinical and experimental studies have established that metabolic abnormalities in the heart per se also play a crucial role in the development of heart failure. Following glucocorticoids, glucose utilization is compromised in the heart. This attenuated glucose metabolism is associated with altered fatty acid supply, composition, and utilization. In the heart, elevated fatty acid use has been implicated in a number of metabolic, morphological, and mechanical changes and, more recently, in “lipotoxicity”. In the present article, we review the action of glucocorticoids, their role in insulin resistance, and their influence in modulating peripheral and cardiac metabolism and heart disease.


2016 ◽  
Vol 36 (6) ◽  
Author(s):  
Georgia Keramida ◽  
James Hunter ◽  
Adrien Michael Peters

Hepatic steatosis is associated with obesity and insulin resistance. Whether hepatic glucose utilization rate (glucose phosphorylation rate; MRglu) is increased in steatosis and/or obesity is uncertain. Our aim was to determine the separate relationships of steatosis and obesity with MRglu. Sixty patients referred for routine PET/CT had dynamic PET imaging over the abdomen for 30 min post-injection of F-18-fluorodeoxyglucose (FDG), followed by Patlak–Rutland graphical analysis of the liver using abdominal aorta for arterial input signal. The plot gradient was divided by the intercept to give hepatic FDG clearance normalized to hepatic FDG distribution volume (ml/min per 100 ml) and multiplied by blood glucose to give hepatic MRglu (μmol/min per 100 ml). Hepatic steatosis was defined as CT density of ≤40 HU measured from the 60 min whole body routine PET/CT and obesity as body mass index of ≥30 kg/m2. Hepatic MRglu was higher in patients with steatosis (3.3±1.3 μmol/min per 100 ml) than those without (1.7±1.2 μmol/min per 100 ml; P<0.001) but there was no significant difference between obese (2.5±1.6 μmol/min per 100 ml) and non-obese patients (2.1±1.3 μmol/min per 100 ml). MRglu was increased in obese patients only if they had steatosis. Non-obese patients with steatosis still had increased MRglu. There was no association between MRglu and chemotherapy history. We conclude that MRglu is increased in hepatic steatosis probably through insulin resistance, hyperinsulinaemia and up-regulation of hepatic hexokinase, irrespective of obesity.


1999 ◽  
Vol 276 (2) ◽  
pp. E390-E400 ◽  
Author(s):  
Bess Adkins Marshall ◽  
Polly A. Hansen ◽  
Nancy J. Ensor ◽  
M. Allison Ogden ◽  
Mike Mueckler

Insulin-stimulated glucose uptake is defective in patients with type 2 diabetes. To determine whether transgenic glucose transporter overexpression in muscle can prevent diabetes induced by a high-fat, high-sugar diet, singly (GLUT-1, GLUT-4) and doubly (GLUT-1 and -4) transgenic mice were placed on a high-fat, high-sugar diet or a standard chow diet. On the high-fat, high-sugar diet, wild-type but not transgenic mice developed fasting hyperglycemia and glucose intolerance (peak glucose of 337 ± 19 vs. 185–209 mg/dl in the same groups on the high-fat, high-sugar diet and 293 ± 13 vs. 166–194 mg/dl on standard chow). Hyperinsulinemic clamps showed that transporter overexpression elevated insulin-stimulated glucose utilization on standard chow (49 ± 4 mg ⋅ kg−1 ⋅ min−1in wild-type vs. 61 ± 4, 67 ± 5, and 63 ± 6 mg ⋅ kg−1 ⋅ min−1in GLUT-1, GLUT-4, and GLUT-1 and -4 transgenic mice given 20 mU ⋅ kg−1 ⋅ min−1insulin, and 54 ± 7, 85 ± 4, and 98 ± 11 in wild-type, GLUT-1, and GLUT-4 mice given 60–80 mU ⋅ kg−1 ⋅ min−1insulin). On the high-fat, high-sugar diet, wild-type and GLUT-1 mice developed marked insulin resistance, but GLUT-4 and GLUT-1 and -4 mice were somewhat protected (glucose utilization during hyperinsulinemic clamp of 28.5 ± 3.4 vs. 42.4 ± 5.9, 51.2 ± 8.1, and 55.9 ± 4.9 mg ⋅ kg−1 ⋅ min−1in wild type, GLUT-1, GLUT-4, GLUT-1 and -4 mice). These data demonstrate that overexpression of GLUT-1 and/or GLUT-4 enhances whole body glucose utilization and prevents the development of fasting hyperglycemia and glucose intolerance induced by a high-fat, high-sugar diet. GLUT-4 overexpression improves the insulin resistance induced by the diet. We conclude that upregulation of glucose transporters in skeletal muscle may be an effective therapeutic approach to the treatment of human type 2 diabetes.


1984 ◽  
Vol 221 (3) ◽  
pp. 915-917 ◽  
Author(s):  
R A Challis ◽  
L Budohoski ◽  
B McManus ◽  
E A Newsholme

The decreased sensitivity of glycolysis to insulin seen in isolated soleus muscles from genetically obese Zucker rats was abolished by addition of the adenosine-receptor antagonist 8-phenyltheophylline to the incubation medium; 8-phenyltheophylline had no effect on the sensitivity of glycogen synthesis to insulin. These findings suggest that changes in the sensitivity of glucose utilization by muscles of genetically obese rats may be explained, in part, by a modification in either the concentration of adenosine or the affinity of adenosine receptors in skeletal muscle.


1995 ◽  
Vol 269 (5) ◽  
pp. E858-E863 ◽  
Author(s):  
P. Ramos ◽  
E. Herrera

To determine whether sustained exaggerated hyperinsulinemia in normoglycemic rats modifies insulin responsiveness during pregnancy, 17-day-pregnant and virgin rats were studied after receiving a continuous intravenous infusion (35 ml/day) of either 50% glucose or bidistilled water (controls) for 72 h. Plasma glucose was unchanged, whereas insulin was highly increased, and the effect was more marked in pregnant than in virgin rats. Insulin responsiveness, estimated under the hyperinsulinemic euglycemic clamp with 0.8 IU insulin.h-1.kg-1, was lower in control pregnant than in virgin rats but higher in pregnant than in virgin rats in those that had received the glucose infusion. The tissue glucose utilization metabolic index (GUI) was estimated with 2-deoxy-D-[1-3H]glucose in the clamped rats. The GUI was lower in heart, white- and red-fiber skeletal muscle, and adipose tissue in control pregnant rats than in control virgin rats, and, although the glucose infusion decreased that index in both red-fiber muscle and adipose tissue in virgin rats, glucose increased the index in red-fiber muscle in pregnant rats to the level found in virgin controls. Results therefore show that, when unaccompanied by hypoglycemia, sustained exaggerated hyperinsulinemia decreases insulin responsiveness in virgin rats but reverts insulin resistance in late-pregnant rats.


1998 ◽  
Vol 65 (1) ◽  
pp. 44-50 ◽  
Author(s):  
Nasser M. Rizk ◽  
Daniel A. Meier ◽  
Debra J. Pastorek ◽  
Glenn R. Krakower ◽  
Ahmed H. Kissebah

Sign in / Sign up

Export Citation Format

Share Document