scholarly journals From bulk, single-cell to spatial RNA sequencing

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Xinmin Li ◽  
Cun-Yu Wang

AbstractRNA sequencing (RNAseq) can reveal gene fusions, splicing variants, mutations/indels in addition to differential gene expression, thus providing a more complete genetic picture than DNA sequencing. This most widely used technology in genomics tool box has evolved from classic bulk RNA sequencing (RNAseq), popular single cell RNA sequencing (scRNAseq) to newly emerged spatial RNA sequencing (spRNAseq). Bulk RNAseq studies average global gene expression, scRNAseq investigates single cell RNA biology up to 20,000 individual cells simultaneously, while spRNAseq has ability to dissect RNA activities spatially, representing next generation of RNA sequencing. This article highlights these technologies, characteristic features and suitable applications in precision oncology.

Circulation ◽  
2020 ◽  
Vol 142 (14) ◽  
pp. 1374-1388
Author(s):  
Yanming Li ◽  
Pingping Ren ◽  
Ashley Dawson ◽  
Hernan G. Vasquez ◽  
Waleed Ageedi ◽  
...  

Background: Ascending thoracic aortic aneurysm (ATAA) is caused by the progressive weakening and dilatation of the aortic wall and can lead to aortic dissection, rupture, and other life-threatening complications. To improve our understanding of ATAA pathogenesis, we aimed to comprehensively characterize the cellular composition of the ascending aortic wall and to identify molecular alterations in each cell population of human ATAA tissues. Methods: We performed single-cell RNA sequencing analysis of ascending aortic tissues from 11 study participants, including 8 patients with ATAA (4 women and 4 men) and 3 control subjects (2 women and 1 man). Cells extracted from aortic tissue were analyzed and categorized with single-cell RNA sequencing data to perform cluster identification. ATAA-related changes were then examined by comparing the proportions of each cell type and the gene expression profiles between ATAA and control tissues. We also examined which genes may be critical for ATAA by performing the integrative analysis of our single-cell RNA sequencing data with publicly available data from genome-wide association studies. Results: We identified 11 major cell types in human ascending aortic tissue; the high-resolution reclustering of these cells further divided them into 40 subtypes. Multiple subtypes were observed for smooth muscle cells, macrophages, and T lymphocytes, suggesting that these cells have multiple functional populations in the aortic wall. In general, ATAA tissues had fewer nonimmune cells and more immune cells, especially T lymphocytes, than control tissues did. Differential gene expression data suggested the presence of extensive mitochondrial dysfunction in ATAA tissues. In addition, integrative analysis of our single-cell RNA sequencing data with public genome-wide association study data and promoter capture Hi-C data suggested that the erythroblast transformation-specific related gene( ERG ) exerts an important role in maintaining normal aortic wall function. Conclusions: Our study provides a comprehensive evaluation of the cellular composition of the ascending aortic wall and reveals how the gene expression landscape is altered in human ATAA tissue. The information from this study makes important contributions to our understanding of ATAA formation and progression.


mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Rosiris León-Rivera ◽  
Brenda Morsey ◽  
Meng Niu ◽  
Howard S. Fox ◽  
Joan W. Berman

ABSTRACT HIV reservoirs persist despite successful antiretroviral therapy (ART) and are a major obstacle to the eradication and cure of HIV. The mature monocyte subset, CD14+CD16+, contributes to viral reservoirs and HIV-associated comorbidities. Only a subset of monocytes harbors HIV (HIV+), while the rest remain uninfected, exposed cells (HIVexp). We developed an innovative single cell RNA sequencing (scRNAseq) pipeline that detects HIV and host transcripts simultaneously, enabling us to examine differences between HIV+ and HIVexp mature monocytes. Using this, we characterized uninfected, HIV+, and HIVexp primary human mature monocytes with and without ART. We showed that HIV+ mature monocytes do not form their own cluster separately from HIVexp but can be distinguished by significant differential gene expression. We found that ART decreased levels of unspliced HIV transcripts potentially by modulating host transcriptional regulators shown to decrease viral infection and replication. We also identified and characterized mature monocyte subpopulations differentially impacted by HIV and ART. We identified genes dysregulated by ART in HIVexp monocytes compared to their uninfected counterpart and, of interest, the junctional protein ALCAM, suggesting that ART impacts monocyte functions. Our data provide a novel method for simultaneous detection of HIV and host transcripts. We identify potential targets, such as those genes whose expression is increased in HIV+ mature monocytes compared to HIVexp, to block their entry into tissues, preventing establishment/replenishment of HIV reservoirs even with ART, thereby reducing and/or eliminating viral burden and HIV-associated comorbidities. Our data also highlight the heterogeneity of mature monocyte subsets and their potential contributions to HIV pathogenesis in the ART era. IMPORTANCE HIV enters tissues early after infection, leading to establishment and persistence of HIV reservoirs despite antiretroviral therapy (ART). Viral reservoirs are a major obstacle to the eradication and cure of HIV. CD14+CD16+ (mature) monocytes may contribute to establishment and reseeding of reservoirs. A subset of monocytes, consisting mainly of CD14+CD16+ cells, harbors HIV (HIV+), while the rest remain uninfected, exposed cells (HIVexp). It is important to identify cells harboring virus to eliminate reservoirs. Using an innovative single-cell RNA sequencing (scRNAseq) pipeline to detect HIV and host transcripts simultaneously, we characterized HIV+ and HIVexp primary human mature monocytes with and without ART. HIV+ mature monocytes are not a unique subpopulation but rather can be distinguished from HIVexp by differential gene expression. We characterized mature monocyte subpopulations differently impacted by HIV and ART, highlighting their potential contributions to HIV-associated comorbidities. Our data propose therapeutic targets to block HIV+ monocyte entry into tissues, preventing establishment and replenishment of reservoirs even with ART.


iScience ◽  
2021 ◽  
Vol 24 (4) ◽  
pp. 102357
Author(s):  
Brenda Morsey ◽  
Meng Niu ◽  
Shetty Ravi Dyavar ◽  
Courtney V. Fletcher ◽  
Benjamin G. Lamberty ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0205883 ◽  
Author(s):  
Joseph C. Mays ◽  
Michael C. Kelly ◽  
Steven L. Coon ◽  
Lynne Holtzclaw ◽  
Martin F. Rath ◽  
...  

Viruses ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 46 ◽  
Author(s):  
Yi-Sheng Sun ◽  
Zhang-Nv Yang ◽  
Fang Xu ◽  
Chen Chen ◽  
Hang-Jing Lu ◽  
...  

Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are the two most important pathogens of hand, foot, and mouth disease (HFMD). However, the neuropathogenesis of EV71 and CVA16 has not been elucidated. In our previous study, we established gerbils as a useful model for both EV71 and CVA16 infection. In this work, we used RNA-seq technology to analyze the global gene expression of the brainstem of EV71- and CVA16-infected gerbils. We found that 3434 genes were upregulated while 916 genes were downregulated in EV71-infected gerbils. In CVA16-infected gerbils, 1039 genes were upregulated, and 299 genes were downregulated. We also found significant dysregulation of cytokines, such as IP-10 and CXCL9, in the brainstem of gerbils. The expression levels of 10 of the most upregulated genes were confirmed by real-time RT-PCR, and the upregulated tendency of most genes was in accordance with the differential gene expression (DGE) results. Our work provided global gene expression analysis of virus-infected gerbils and laid a solid foundation for elucidating the neuropathogenesis mechanisms of EV71 and CVA16.


Sign in / Sign up

Export Citation Format

Share Document