scholarly journals DMD-based hyperspectral microscopy with flexible multiline parallel scanning

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xue Dong ◽  
Geng Tong ◽  
Xuankun Song ◽  
Xingchen Xiao ◽  
Yiting Yu

AbstractAs one of the most common hyperspectral microscopy (HSM) techniques, line-scanning HSM is currently utilized in many fields. However, its scanning efficiency is still considered to be inadequate since many biological and chemical processes occur too rapidly to be captured. Accordingly, in this work, a digital micromirror device (DMD) based on microelectromechanical systems (MEMS) is utilized to demonstrate a flexible multiline scanning HSM system. To the best of our knowledge, this is the first line-scanning HSM system in which the number of scanning lines N can be tuned by simply changing the DMD’s parallel scanning units according to diverse applications. This brilliant strategy of effortless adjustability relies only on on-chip scanning methods and totally exploits the benefits of parallelization, aiming to achieve nearly an N-time improvement in the detection efficiency and an N-time decrease in the scanning time and data volume compared with the single-line method under the same operating conditions. To validate this, we selected a few samples of different spectral wavebands to perform reflection imaging, transmission imaging, and fluorescence imaging with varying numbers of scanning lines. The results show the great potential of our DMD-based HSM system for the rapid development of cellular biology, material analysis, and so on. In addition, its on-chip scanning process eliminates the inherent microscopic architecture, making the whole system compact, lightweight, portable, and not subject to site constraints.

2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Samuel F. Asokanthan ◽  
Soroush Arghavan ◽  
Mohamed Bognash

Effect of stochastic fluctuations in angular velocity on the stability of two degrees-of-freedom ring-type microelectromechanical systems (MEMS) gyroscopes is investigated. The governing stochastic differential equations (SDEs) are discretized using the higher-order Milstein scheme in order to numerically predict the system response assuming the fluctuations to be white noise. Simulations via Euler scheme as well as a measure of largest Lyapunov exponents (LLEs) are employed for validation purposes due to lack of similar analytical or experimental data. The response of the gyroscope under different noise fluctuation magnitudes has been computed to ascertain the stability behavior of the system. External noise that affect the gyroscope dynamic behavior typically results from environment factors and the nature of the system operation can be exerted on the system at any frequency range depending on the source. Hence, a parametric study is performed to assess the noise intensity stability threshold for a number of damping ratio values. The stability investigation predicts the form of threshold fluctuation intensity dependence on damping ratio. Under typical gyroscope operating conditions, nominal input angular velocity magnitude and mass mismatch appear to have minimal influence on system stability.


2020 ◽  
Author(s):  
Jacyeude De Morais Passos Araújo Segundo ◽  
Carlos Vinicius Alves Coimbra ◽  
Mauro Sergio Silva Pinto ◽  
Leonardo Ramos Rodrigues

Ao passo que a Indústria 4.0 avança, conjuntos de ações de automação e controle vem sendo implementados. Dentro deste contexto o sensoriamento de motores de indução trifásicos vem se tornando remoto e conectado à internet. A manutenção preventiva pode então utilizar esse grande volume de dados para aumentar sua capacidade de detecção de falhas em relação aos métodos clássicos de classificação. Este trabalho propõe o desenvolvimento de um identificador de diferentes condições, entre normalidade, desbalanceamento no rotor, alimentação por duas fases e desníveis na base de um motor trifásico de indução W22 IR3, com base em dados de análises vibracionais e de correntes elétricas. Utilizando um sistema para aquisição de dados que consiste em um acelerômetro MEMS (Microelectromechanical Systems) e um transformador de corrente não invasivo SCT-013, controlados por um SoC (System on Chip). A análise dos dados foi realizada na IBM Cloud através de Watson Studio e SPSS Modeler para aplicação de um modelo estatístico Support Vectot Machine (SVM) que foi treinado e testado usando diferentes funções kernel. Observou-se que a oferta da escolha das funções kernel condicionam os dados a diferentes performances de processamento. A utilização dos algoritmos de classificação SVM, provou ser bastante robusto e eficiente. Mostrando que a capacidade de generalização do classificador foi garantida.


2016 ◽  
Vol 78 (8-4) ◽  
Author(s):  
Ummikalsom Abidin ◽  
Jumril Yunas ◽  
Burhanuddin Yeop Majlis

Joule heating effect is substantial in an electromagnet system due to high density current from current-carrying conductor for high magnetic field generation. In Lab-on-chip (LoC) Magnetically Activated Cell Sorting (MACS) device, Joule heating effect generating high temperature and affecting the biological cells viability is investigated. The temperature rise of the integrated system was measured using resistance temperature detector, RTD Pt100. Three temperature rise conditions which are from the bare spiral-shaped magnet wire, the combination of magnet wire and on-chip magnetic core and combination of magnet wire, on-chip magnetic core and 150 mm polydimethylsiloxane (PDMS) layer have been investigated.  The combination of electromagnet of spiral-shaped magnet wire coil and on-chip magnetic core has reduced the temperature significantly which are, ~ 38 %  and ~ 26 % with magnet wire winding, N = 10 (IDC = 3.0 A, t = 210 s) and N = 20 (IDC = 2.5 A, t = 210 s) respectively. The reduced Joule heating effect is expected due to silicon chip of high thermal conductivity material enable fast heat dissipation to the surrounding.  Therefore, the integration of electromagnet system and on-chip magnetic core has the potential to be used as part of LoC MACS system provided the optimum operating conditions are determined


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
N. V. Lavrik ◽  
P. G. Datskos

Abstract In this work, we describe the design, fabrication, and characterization of purely mechanical miniature resonating structures that exhibit gyroscopic performance comparable to that of more complex microelectromechanical systems. Compared to previous implementations of Coriolis vibratory gyroscopes, the present approach has the key advantage of using excitation and probing that do not require any on-chip electronics or electrical contacts near the resonating structure. More specifically, our design relies on differential optical readout, each channel of which is similar to the “optical lever” readout used in atomic force microscopy. The piezoelectrically actuated stage provides highly efficient excitation of millimeter-scale tuning fork structures that were fabricated using widely available high-throughput wafer-level silicon processing. In our experiments, reproducible responses to rotational rates as low as 1.8 × 103° h−1 were demonstrated using a benchtop prototype without any additional processing of the raw signal. The noise-equivalent rate, ΩNER, derived from the Allan deviation plot, was found to be <0.5° h−1 for a time of 103 s. Despite the relatively low Q factors (<104) of the tuning fork structures operating under ambient pressure and temperature conditions, the measured performance was not limited by thermomechanical noise. In fact, the performance demonstrated in this proof-of-principle study is approximately four orders of magnitude away from the fundamental limit.


Author(s):  
Timothy S. English ◽  
Leslie M. Phinney ◽  
Patrick E. Hopkins ◽  
Justin R. Serrano

Accurate thermal conductivity values are essential to the modeling, design, and thermal management of microelectromechanical systems (MEMS) and devices. However, the experimental technique best suited to measure thermal conductivity, as well as thermal conductivity itself, varies with the device materials, fabrication conditions, geometry, and operating conditions. In this study, the thermal conductivity of boron doped single-crystal silicon-on-insulator (SOI) microbridges is measured over the temperature range from 77 to 350 K. The microbridges are 4.6 mm long, 125 μm tall, and two widths, 50 or 85 μm. Measurements on the 85 μm wide microbridges are made using both steady-state electrical resistance thermometry and optical time-domain thermoreflectance. A thermal conductivity of ∼ 77 W/mK is measured for both microbridge widths at room temperature, where both experimental techniques agree. However, a discrepancy at lower temperatures is attributed to differences in the interaction volumes and in turn, material properties, probed by each technique. This finding is qualitatively explained through Boltzmann transport equation modeling under the relaxation time approximation.


Author(s):  
Ryszard J. Pryputniewicz ◽  
Ryan T. Marinis ◽  
Adam R. Klempner ◽  
Peter Hefti

Development of microelectromechanical systems (MEMS) constitutes one of the most challenging tasks in today’s micromechanics. In addition to design, analysis, and fabrication capabilities, this task also requires advanced test methodologies for determination of functional characteristics of MEMS to enable refinement and optimization of their designs. Until recently, this characterization was hindered by lack of a readily available methodology. However, building on recent advances in photonics, electronics, and computer technology, we have developed an optoelectronic methodology particularly suitable for development of MEMS. In this paper, we describe the optoelectronic methodology and illustrate its use with representative examples. By quantitatively characterizing performance of MEMS, under different vibration, thermal, and other operating conditions, we can make specific suggestions for their improvements. Then, using the optoelectronic method, we can verify the effects of these improvements. In this way, we can develop better understanding of functional characteristics of MEMS, which will ensure that they are operated at optimum performance, are reliable, and are durable.


2018 ◽  
Vol 7 (4) ◽  
pp. 2246
Author(s):  
T Shanmuganathan ◽  
U Ramachandraiah

In the recent years, with the rapid development of semiconductor technologies and increasing demand for more effective multi-Core Domain Controller platforms, there is a clear demand for effective routing algorithms that can be used to route the packets between these platforms, while enhancing an on chip network performance, achieving a better latency and throughput. This paper proposes an adaptive on Chip Router algorithm with a simple adaptive routing algorithm based on runtime weighted arbitration and resource allocation methodology, where the routing decisions are minimized for applications-specific MDCU platforms. The proposed scheme is evaluated by simulations and its performance in terms of latency, area, power consumption and cost reduction per vehicle are presented. The results show that, 24.5% of latency reduction, 62.25% area utilization optimization and 63.76% of energy efficient compare with existing methods.  


Micromachines ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 928 ◽  
Author(s):  
Haoran Wang ◽  
Yifei Ma ◽  
Hao Yang ◽  
Huabei Jiang ◽  
Yingtao Ding ◽  
...  

Photoacoustic imaging (PAI) is drawing extensive attention and gaining rapid development as an emerging biomedical imaging technology because of its high spatial resolution, large imaging depth, and rich optical contrast. PAI has great potential applications in endoscopy, but the progress of endoscopic PAI was hindered by the challenges of manufacturing and assembling miniature imaging components. Over the last decade, microelectromechanical systems (MEMS) technology has greatly facilitated the development of photoacoustic endoscopes and extended the realm of applicability of the PAI. As the key component of photoacoustic endoscopes, micromachined ultrasound transducers (MUTs), including piezoelectric MUTs (pMUTs) and capacitive MUTs (cMUTs), have been developed and explored for endoscopic PAI applications. In this article, the recent progress of pMUTs (thickness extension mode and flexural vibration mode) and cMUTs are reviewed and discussed with their applications in endoscopic PAI. Current PAI endoscopes based on pMUTs and cMUTs are also introduced and compared. Finally, the remaining challenges and future directions of MEMS ultrasound transducers for endoscopic PAI applications are given.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Muhammad Shoaib ◽  
Nor Hisham Hamid ◽  
Aamir Farooq Malik ◽  
Noohul Basheer Zain Ali ◽  
Mohammad Tariq Jan

The present review provides information relevant to issues and challenges in MEMS testing techniques that are implemented to analyze the microelectromechanical systems (MEMS) behavior for specific application and operating conditions. MEMS devices are more complex and extremely diverse due to the immersion of multidomains. Their failure modes are distinctive under different circumstances. Therefore, testing of these systems at device level as well as at mass production level, that is, parallel testing, is becoming very challenging as compared to the IC test, because MEMS respond to electrical, physical, chemical, and optical stimuli. Currently, test systems developed for MEMS devices have to be customized due to their nondeterministic behavior and complexity. The accurate measurement of test systems for MEMS is difficult to quantify in the production phase. The complexity of the device to be tested required maturity in the test technique which increases the cost of test development; this practice is directly imposed on the device cost. This factor causes a delay in time-to-market.


Sign in / Sign up

Export Citation Format

Share Document