scholarly journals Duplications of KIAA1549 and BRAF screening by Droplet Digital PCR from formalin-fixed paraffin-embedded DNA is an accurate alternative for KIAA1549-BRAF fusion detection in pilocytic astrocytomas

2018 ◽  
Vol 31 (10) ◽  
pp. 1490-1501 ◽  
Author(s):  
Romain Appay ◽  
Frédéric Fina ◽  
Nicolas Macagno ◽  
Laëtitia Padovani ◽  
Carole Colin ◽  
...  
2018 ◽  
Vol 20 (2) ◽  
pp. 240-252 ◽  
Author(s):  
Ashleigh C. McEvoy ◽  
Benjamin A. Wood ◽  
Nima M. Ardakani ◽  
Michelle R. Pereira ◽  
Robert Pearce ◽  
...  

Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 114
Author(s):  
José Guilherme Datorre ◽  
Ana Carolina de Carvalho ◽  
Mariana Bisarro dos Reis ◽  
Monise dos Reis ◽  
Marcus Matsushita ◽  
...  

The use of droplet digital PCR (ddPCR) to identify and quantify low-abundance targets is a significant advantage for accurately detecting potentially oncogenic bacteria. Fusobacterium nucleatum (Fn) is implicated in colorectal cancer (CRC) tumorigenesis and is becoming an important prognostic biomarker. We evaluated the detection accuracy and clinical relevance of Fn DNA by ddPCR in a molecularly characterized, formalin-fixed, paraffin-embedded (FFPE) CRC cohort previously analyzed by qPCR for Fn levels. Following a ddPCR assay optimization and an analytical evaluation, Fn DNA were measured in 139 CRC FFPE cases. The measures of accuracy for Fn status compared to the prior results generated by qPCR and the association with clinicopathological and molecular patients’ features were also evaluated. The ddPCR-based Fn assay was sensitive and specific to positive controls. Fn DNA were detected in 20.1% of cases and further classified as Fn-high and Fn-low/negative, according to the median amount of Fn DNA that were detected in all cases and associated with the patient’s worst prognosis. There was a low agreement between the Fn status determined by ddPCR and qPCR (Cohen’s Kappa = 0.210). Our findings show that ddPCR can detect and quantify Fn in FFPE tumor tissues and highlights its clinical relevance in Fn detection in a routine CRC setting.


2013 ◽  
Vol 59 (6) ◽  
pp. 991-994 ◽  
Author(s):  
Phillip Belgrader ◽  
Stephanie C Tanner ◽  
John F Regan ◽  
Ryan Koehler ◽  
Benjamin J Hindson ◽  
...  

BACKGROUND Human epidermal growth factor receptor 2 (HER2) testing is routinely performed by immunohistochemistry (IHC) and/or fluorescence in situ hybridization (FISH) analyses for all new cases of invasive breast carcinoma. IHC is easier to perform, but analysis can be subjective and variable. FISH offers better diagnostic accuracy and added confidence, particularly when it is used to supplement weak IHC signals, but it is more labor intensive and costly than IHC. We examined the performance of droplet digital PCR (ddPCR) as a more precise and less subjective alternative for quantifying HER2 DNA amplification. METHODS Thirty-nine cases of invasive breast carcinoma containing ≥30% tumor were classified as positive or negative for HER2 by IHC, FISH, or both. DNA templates for these cases were prepared from formalin-fixed paraffin-embedded (FFPE) tissues to determine the HER2 copy number by ddPCR. ddPCR involved emulsifying hydrolysis probe–based PCR reaction mixtures containing the ERBB2 [v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma derived oncogene homolog (avian); also known as HER2] gene and chromosome 17 centromere assays into nanoliter-sized droplets for thermal cycling and analysis. RESULTS ddPCR distinguished, through differences in the level of HER2 amplification, the 10 HER2-positive samples from the 29 HER2-negative samples with 100% concordance to HER2 status obtained by FISH and IHC analysis. ddPCR results agreed with the FISH results for the 6 cases that were equivocal by IHC analyses, confirming 2 of these samples as positive for HER2 and the other 4 as negative. CONCLUSIONS ddPCR can be used as a molecular-analysis tool to precisely measure copy number alterations in FFPE samples of heterogeneous breast tumor tissue.


2005 ◽  
Vol 53 (8) ◽  
pp. 963-969 ◽  
Author(s):  
Stephen B. Hunter ◽  
Vijay Varma ◽  
Bahig Shehata ◽  
J.D.L. Nolen ◽  
Cynthia Cohen ◽  
...  

Apolipoprotein D (apoD) expression has been shown to correlate both with cell cycle arrest and with prognosis in several types of malignancy, including central nervous system astrocytomas and medulloblastomas. ApoD expression was investigated by real-time quantitative RT-PCR using RNA extracted from 68 formalin-fixed, paraffin-embedded brain specimens. Glyceraldehyde phosphate dehydrogenase was used as an internal control. Quantitation was achieved on all specimens. Sixteen poorly infiltrating WHO grade I glial neoplasms (i.e., pilocytic astrocytomas and gangliogliomas) showed an average 20-fold higher apoD expression level compared with the 20 diffusely infiltrating glial neoplasms (i.e., glioblastoma, anaplastic astrocytoma, oligodendrogliomas; p=0.00004). A small number of exceptions (i.e., two high-expressing glioblastomas and three low-expressing gangliogliomas) were identified. Analyzed as individual tumor groups, poorly infiltrating grade I pilocytic astrocytomas and gangliogliomas differed significantly from each tumor type within the diffusely infiltrating higher-grade category ( p<0.05 for each comparison) but not from each other ( p>0.05). Conversely, each individual tumor type within the diffusely infiltrating category differed significantly from both pilocytic astrocytomas and gangliogliomas ( p<0.05) but did not vary from other infiltrating tumors ( p>0.05). Ependymomas, non-infiltrating grade II neoplasms, expressed levels of apoD similar to or lower than levels expressed by the diffusely infiltrating gliomas. Ten medulloblastomas with survival longer than 3 years averaged slightly higher apoD expression than four fatal medulloblastomas; however, this result was not statistically significant and individual exceptions were notable. In 17 of the medulloblastomas, MIB-1 proliferation rates quantitated by image cytometry did not correlate with apoD expression. In addition, apoD expression was 5-fold higher in the slowly proliferating grade I glial neoplasms compared with non-proliferating normal brain tissue ( p=0.01), suggesting that apoD expression is not simply an inverse measure of proliferation. ApoD expression measured by quantitative RT-PCR may be useful in the differential diagnosis of primary brain tumors, particularly pilocytic astrocytomas and gangliogliomas.


Sign in / Sign up

Export Citation Format

Share Document