scholarly journals Identification of ∆9-tetrahydrocannabinol (THC) impairment using functional brain imaging

Author(s):  
Jodi M. Gilman ◽  
William A. Schmitt ◽  
Kevin Potter ◽  
Brian Kendzior ◽  
Gladys N. Pachas ◽  
...  

AbstractThe primary cannabinoid in cannabis, Δ9-tetrahydrocannabinol (THC), causes intoxication and impaired function, with implications for traffic, workplace, and other situational safety risks. There are currently no evidence-based methods to detect cannabis-impaired driving, and current field sobriety tests with gold-standard, drug recognition evaluations are resource-intensive and may be prone to bias. This study evaluated the capability of a simple, portable imaging method to accurately detect individuals with THC impairment. In this double-blind, randomized, cross-over study, 169 cannabis users, aged 18–55 years, underwent functional near-infrared spectroscopy (fNIRS) before and after receiving oral THC and placebo, at study visits one week apart. Impairment was defined by convergent classification by consensus clinical ratings and an algorithm based on post-dose tachycardia and self-rated “high.” Our primary outcome, PFC oxygenated hemoglobin concentration (HbO), was increased after THC only in participants operationalized as impaired, independent of THC dose. ML models using fNIRS time course features and connectivity matrices identified impairment with 76.4% accuracy, 69.8% positive predictive value (PPV), and 10% false-positive rate using convergent classification as ground truth, which exceeded Drug Recognition Evaluator-conducted expanded field sobriety examination (67.8% accuracy, 35.4% PPV, and 35.4% false-positive rate). These findings demonstrate that PFC response activation patterns and connectivity produce a neural signature of impairment, and that PFC signal, measured with fNIRS, can be used as a sole input to ML models to objectively determine impairment from THC intoxication at the individual level. Future work is warranted to determine the specificity of this classifier to acute THC impairment.ClinicalTrials.gov Identifier: NCT03655717

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Darren Mao ◽  
Julia Wunderlich ◽  
Borislav Savkovic ◽  
Emily Jeffreys ◽  
Namita Nicholls ◽  
...  

AbstractSpeech detection and discrimination ability are important measures of hearing ability that may inform crucial audiological intervention decisions for individuals with a hearing impairment. However, behavioral assessment of speech discrimination can be difficult and inaccurate in infants, prompting the need for an objective measure of speech detection and discrimination ability. In this study, the authors used functional near-infrared spectroscopy (fNIRS) as the objective measure. Twenty-three infants, 2 to 10 months of age participated, all of whom had passed newborn hearing screening or diagnostic audiology testing. They were presented with speech tokens at a comfortable listening level in a natural sleep state using a habituation/dishabituation paradigm. The authors hypothesized that fNIRS responses to speech token detection as well as speech token contrast discrimination could be measured in individual infants. The authors found significant fNIRS responses to speech detection in 87% of tested infants (false positive rate 0%), as well as to speech discrimination in 35% of tested infants (false positive rate 9%). The results show initial promise for the use of fNIRS as an objective clinical tool for measuring infant speech detection and discrimination ability; the authors highlight the further optimizations of test procedures and analysis techniques that would be required to improve accuracy and reliability to levels needed for clinical decision-making.


2002 ◽  
Vol 41 (01) ◽  
pp. 37-41 ◽  
Author(s):  
S. Shung-Shung ◽  
S. Yu-Chien ◽  
Y. Mei-Due ◽  
W. Hwei-Chung ◽  
A. Kao

Summary Aim: Even with careful observation, the overall false-positive rate of laparotomy remains 10-15% when acute appendicitis was suspected. Therefore, the clinical efficacy of Tc-99m HMPAO labeled leukocyte (TC-WBC) scan for the diagnosis of acute appendicitis in patients presenting with atypical clinical findings is assessed. Patients and Methods: Eighty patients presenting with acute abdominal pain and possible acute appendicitis but atypical findings were included in this study. After intravenous injection of TC-WBC, serial anterior abdominal/pelvic images at 30, 60, 120 and 240 min with 800k counts were obtained with a gamma camera. Any abnormal localization of radioactivity in the right lower quadrant of the abdomen, equal to or greater than bone marrow activity, was considered as a positive scan. Results: 36 out of 49 patients showing positive TC-WBC scans received appendectomy. They all proved to have positive pathological findings. Five positive TC-WBC were not related to acute appendicitis, because of other pathological lesions. Eight patients were not operated and clinical follow-up after one month revealed no acute abdominal condition. Three of 31 patients with negative TC-WBC scans received appendectomy. They also presented positive pathological findings. The remaining 28 patients did not receive operations and revealed no evidence of appendicitis after at least one month of follow-up. The overall sensitivity, specificity, accuracy, positive and negative predictive values for TC-WBC scan to diagnose acute appendicitis were 92, 78, 86, 82, and 90%, respectively. Conclusion: TC-WBC scan provides a rapid and highly accurate method for the diagnosis of acute appendicitis in patients with equivocal clinical examination. It proved useful in reducing the false-positive rate of laparotomy and shortens the time necessary for clinical observation.


1993 ◽  
Vol 32 (02) ◽  
pp. 175-179 ◽  
Author(s):  
B. Brambati ◽  
T. Chard ◽  
J. G. Grudzinskas ◽  
M. C. M. Macintosh

Abstract:The analysis of the clinical efficiency of a biochemical parameter in the prediction of chromosome anomalies is described, using a database of 475 cases including 30 abnormalities. A comparison was made of two different approaches to the statistical analysis: the use of Gaussian frequency distributions and likelihood ratios, and logistic regression. Both methods computed that for a 5% false-positive rate approximately 60% of anomalies are detected on the basis of maternal age and serum PAPP-A. The logistic regression analysis is appropriate where the outcome variable (chromosome anomaly) is binary and the detection rates refer to the original data only. The likelihood ratio method is used to predict the outcome in the general population. The latter method depends on the data or some transformation of the data fitting a known frequency distribution (Gaussian in this case). The precision of the predicted detection rates is limited by the small sample of abnormals (30 cases). Varying the means and standard deviations (to the limits of their 95% confidence intervals) of the fitted log Gaussian distributions resulted in a detection rate varying between 42% and 79% for a 5% false-positive rate. Thus, although the likelihood ratio method is potentially the better method in determining the usefulness of a test in the general population, larger numbers of abnormal cases are required to stabilise the means and standard deviations of the fitted log Gaussian distributions.


2019 ◽  
Author(s):  
Amanda Kvarven ◽  
Eirik Strømland ◽  
Magnus Johannesson

Andrews & Kasy (2019) propose an approach for adjusting effect sizes in meta-analysis for publication bias. We use the Andrews-Kasy estimator to adjust the result of 15 meta-analyses and compare the adjusted results to 15 large-scale multiple labs replication studies estimating the same effects. The pre-registered replications provide precisely estimated effect sizes, which do not suffer from publication bias. The Andrews-Kasy approach leads to a moderate reduction of the inflated effect sizes in the meta-analyses. However, the approach still overestimates effect sizes by a factor of about two or more and has an estimated false positive rate of between 57% and 100%.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1894
Author(s):  
Chun Guo ◽  
Zihua Song ◽  
Yuan Ping ◽  
Guowei Shen ◽  
Yuhei Cui ◽  
...  

Remote Access Trojan (RAT) is one of the most terrible security threats that organizations face today. At present, two major RAT detection methods are host-based and network-based detection methods. To complement one another’s strengths, this article proposes a phased RATs detection method by combining double-side features (PRATD). In PRATD, both host-side and network-side features are combined to build detection models, which is conducive to distinguishing the RATs from benign programs because that the RATs not only generate traffic on the network but also leave traces on the host at run time. Besides, PRATD trains two different detection models for the two runtime states of RATs for improving the True Positive Rate (TPR). The experiments on the network and host records collected from five kinds of benign programs and 20 famous RATs show that PRATD can effectively detect RATs, it can achieve a TPR as high as 93.609% with a False Positive Rate (FPR) as low as 0.407% for the known RATs, a TPR 81.928% and FPR 0.185% for the unknown RATs, which suggests it is a competitive candidate for RAT detection.


2020 ◽  
Vol 154 (Supplement_1) ◽  
pp. S5-S5
Author(s):  
Ridin Balakrishnan ◽  
Daniel Casa ◽  
Morayma Reyes Gil

Abstract The diagnostic approach for ruling out suspected acute pulmonary embolism (PE) in the ED setting includes several tests: ultrasound, plasma d-dimer assays, ventilation-perfusion scans and computed tomography pulmonary angiography (CTPA). Importantly, a pretest probability scoring algorithm is highly recommended to triage high risk cases while also preventing unnecessary testing and harm to low/moderate risk patients. The d-dimer assay (both ELISA and immunoturbidometric) has been shown to be extremely sensitive to rule out PE in conjunction with clinical probability. In particularly, d-dimer testing is recommended for low/moderate risk patients, in whom a negative d-dimer essentially rules out PE sparing these patients from CTPA radiation exposure, longer hospital stay and anticoagulation. However, an unspecific increase in fibrin-degradation related products has been seen with increase in age, resulting in higher false positive rate in the older population. This study analyzed patient visits to the ED of a large academic institution for five years and looked at the relationship between d-dimer values, age and CTPA results to better understand the value of age-adjusted d-dimer cut-offs in ruling out PE in the older population. A total of 7660 ED visits had a CTPA done to rule out PE; out of which 1875 cases had a d-dimer done in conjunction with the CT and 5875 had only CTPA done. Out of the 1875 cases, 1591 had positive d-dimer results (>0.50 µg/ml (FEU)), of which 910 (57%) were from patients older than or equal to fifty years of age. In these older patients, 779 (86%) had a negative CT result. The following were the statistical measures of the d-dimer test before adjusting for age: sensitivity (98%), specificity (12%); negative predictive value (98%) and false positive rate (88%). After adjusting for age in people older than 50 years (d-dimer cut off = age/100), 138 patients eventually turned out to be d-dimer negative and every case but four had a CT result that was also negative for a PE. The four cases included two non-diagnostic results and two with subacute/chronic/subsegmental PE on imaging. None of these four patients were prescribed anticoagulation. The statistical measures of the d-dimer test after adjusting for age showed: sensitivity (96%), specificity (20%); negative predictive value (98%) and a decrease in the false positive rate (80%). Therefore, imaging could have been potentially avoided in 138/779 (18%) of the patients who were part of this older population and had eventual negative or not clinically significant findings on CTPA if age-adjusted d-dimers were used. This data very strongly advocates for the clinical usefulness of an age-adjusted cut-off of d-dimer to rule out PE.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Ulrike Baum ◽  
Sangita Kulathinal ◽  
Kari Auranen

Abstract Background Non-sensitive and non-specific observation of outcomes in time-to-event data affects event counts as well as the risk sets, thus, biasing the estimation of hazard ratios. We investigate how imperfect observation of incident events affects the estimation of vaccine effectiveness based on hazard ratios. Methods Imperfect time-to-event data contain two classes of events: a portion of the true events of interest; and false-positive events mistakenly recorded as events of interest. We develop an estimation method utilising a weighted partial likelihood and probabilistic deletion of false-positive events and assuming the sensitivity and the false-positive rate are known. The performance of the method is evaluated using simulated and Finnish register data. Results The novel method enables unbiased semiparametric estimation of hazard ratios from imperfect time-to-event data. False-positive rates that are small can be approximated to be zero without inducing bias. The method is robust to misspecification of the sensitivity as long as the ratio of the sensitivity in the vaccinated and the unvaccinated is specified correctly and the cumulative risk of the true event is small. Conclusions The weighted partial likelihood can be used to adjust for outcome measurement errors in the estimation of hazard ratios and effectiveness but requires specifying the sensitivity and the false-positive rate. In absence of exact information about these parameters, the method works as a tool for assessing the potential magnitude of bias given a range of likely parameter values.


Author(s):  
Phu C. Tran ◽  
Will DeBrock ◽  
Mary E. Lester ◽  
Brett C. Hartman ◽  
Juan Socas ◽  
...  

Abstract Background Transcutaneous tissue oximetry is widely used as an adjunct for postoperative monitoring after microvascular breast reconstruction. Despite a high sensitivity at detecting vascular issues, alarms from probe malfunctions/errors can generate unnecessary nursing calls, concerns, and evaluations. The purpose of this study is to analyze the false positive rate of transcutaneous tissue oximetry monitoring over the postoperative period and assess changes in its utility over time. Patients and Methods Consecutive patients undergoing microvascular breast reconstruction at our institution with monitoring using transcutaneous tissue oximetry were assessed between 2017 and 2019. Variables of interest were transcutaneous tissue oximetry alarms, flap loss, re-exploration, and salvage rates. Results The study included 175 patients (286 flaps). The flap loss rate was 1.0% (3/286). Twelve patients (6.8%) required re-exploration, with 9 patients found to have actual flap compromise (all within 24 hours). The salvage rate was 67.0%. The 3 takebacks after 24 hours were for bleeding concerns rather than anastomotic problems. Within the initial 24-hour postoperative period, 43 tissue oximetry alarms triggered nursing calls; 7 alarms (16.2%) were confirmed to be for flap issues secondary to vascular compromise. After 24 hours, none of the 44 alarms were associated with flap compromise. The false positive rate within 24 hours was 83.7% (36/43) compared with 100% (44/44) after 24 hours (p = 0.01). Conclusion The transcutaneous tissue oximetry false positive rate significantly rises after 24 hours. The benefit may not outweigh the concerns, labor, and effort that results from alarms after postoperative day 1. We recommend considering discontinuing this monitoring after 24 hours.


Sign in / Sign up

Export Citation Format

Share Document