scholarly journals CXCL5 promotes gastric cancer metastasis by inducing epithelial-mesenchymal transition and activating neutrophils

Oncogenesis ◽  
2020 ◽  
Vol 9 (7) ◽  
Author(s):  
Zheying Mao ◽  
Jiahui Zhang ◽  
Yinghong Shi ◽  
Wei Li ◽  
Hui Shi ◽  
...  
2017 ◽  
Vol 42 (3) ◽  
pp. 1025-1036 ◽  
Author(s):  
Dehu Chen ◽  
Guiyuan Liu ◽  
Ning Xu ◽  
Xiaolan You ◽  
Haihua Zhou ◽  
...  

Background/Aims: Gastric cancer (GC) is a common and lethal malignancy, and AMP-activated protein kinase-related kinase 5 (ARK5) has been discovered to promote cancer metastasis in certain types of cancer. In this study, we explored the role of ARK5 in GC invasion and metastasis. Methods: ARK5 and epithelial-mesenchymal transition (EMT)-related markers were determined by immunohistochemistry and western blot in GC specimens. Other methods including stably transfected against ARK5 into SGC7901 and AGS cells, western blot, migration and invasion assays in vitro and nude mice tumorigenicity in vivo were also employed. Results: The results demonstrated that ARK5 expression was increased and positively correlated with metastasis, EMT-related markers and poor prognosis in patients with GC. Knockdown of ARK5 expression remarkably suppressed GC cells invasion and metastasis via regulating EMT, rather than proliferation in vitro and in vivo. And knockdown of ARK5 expression in GC cells resulted in the down-regulation of the mTOR/p70S6k signals, Slug and SIP1. Conclusion: The elevated ARK5 expression was closely associated with cancer metastasis and patient survival, and it seemed to function in GC cells migration and invasion via EMT alteration, together with the alteration of the mTOR/p70S6k signals, Slug and SIP1, thus providing a potential therapeutic target for GC.


2016 ◽  
Vol 22 (2) ◽  
pp. 136-143 ◽  
Author(s):  
Wendao You ◽  
Liang Xu ◽  
Xing Zhang ◽  
Huan Zou ◽  
Dongtao Shi ◽  
...  

MicroRNAs (miRNAs) are globally dysregulated in human carcinomas. However, the specific miRNAs that mediate gastric cancer metastasis have not been identified. We identified 100 miRNAs that are dysregulated in gastric cancer and used a self-assembled cell microarray method to systematically evaluate their capacity to regulate cell migration. MiR-451, which is down-regulated in human gastric cancer samples, potently modulated multiple metastatic phenotypes including cell migration, invasion, proliferation, and epithelial-mesenchymal transition. These effects were achieved via down-regulation of the miR-451 target gene, ERK2. These findings provide new insight into the physiological effects of and potential therapeutic uses for miRNAs in gastric cancer.


2019 ◽  
Vol 30 (19) ◽  
pp. 2527-2534 ◽  
Author(s):  
Linsen Shi ◽  
Zhaoying Wu ◽  
Ji Miao ◽  
Shangce Du ◽  
Shichao Ai ◽  
...  

The accumulation of adenosine in the tumor microenvironment is associated with tumor progression in many cancers. However, whether adenosine is involved in gastric cancer (GC) metastasis and progression, and the underlying molecular mechanism, is largely unclear. In this study, we find that GC tissues and cell lines had higher A2aR levels than nontumor gastric tissues and cell lines. A2aR expression correlated positively with TNMstage, and associated with poor outcomes. Adenosine enhanced the expression of the stemness and epithelial–mesenchymal transition-associated genes by binding to A2aR. A2aR expression on GC cells promoted metastasis in vivo. The PI3K-AKT-mTOR signaling pathway was involved in adenosine-stimulated GC cell migration and invasion. Our results indicate that adenosine promotes GC cell invasion and metastasis by interacting with A2aR to enhance PI3K–AKT–mTOR pathway signaling.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 290
Author(s):  
Itaru Hashimoto ◽  
Takashi Oshima

Despite recent improvements in diagnostic ability and treatment strategies, advanced gastric cancer (GC) has a high frequency of recurrence and metastasis, with poor prognosis. To improve the treatment results of GC, the search for new treatment targets from proteins related to epithelial–mesenchymal transition (EMT) and cell–cell adhesion is currently being conducted. EMT plays an important role in cancer metastasis and is initiated by the loss of cell–cell adhesion, such as tight junctions (TJs), adherens junctions, desmosomes, and gap junctions. Among these, claudins (CLDNs) are highly expressed in some cancers, including GC. Abnormal expression of CLDN1, CLDN2, CLDN3, CLDN4, CLDN6, CLDN7, CLDN10, CLDN11, CLDN14, CLDN17, CLDN18, and CLDN23 have been reported. Among these, CLDN18 is of particular interest. In The Cancer Genome Atlas, GC was classified into four new molecular subtypes, and CLDN18–ARHGAP fusion was observed in the genomically stable type. An anti-CLDN18.2 antibody drug was recently developed as a therapeutic drug for GC, and the results of clinical trials are highly predictable. Thus, CLDNs are highly expressed in GC as TJs and are expected targets for new antibody drugs. Herein, we review the literature on CLDNs, focusing on CLDN18 in GC.


Sign in / Sign up

Export Citation Format

Share Document