scholarly journals A high-fat diet: an unexpected role in preventing the metastatic seeding of colorectal cancer

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Min Long ◽  
Wenjing Wang ◽  
Qiu Sun
2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Xianjing Hu ◽  
Sarwat Fatima ◽  
Minting Chen ◽  
Keyang Xu ◽  
Chunhua Huang ◽  
...  

AbstractAlthough high-fat diet (HFD) has been implicated in the development of colorectal cancer (CRC), the critical signaling molecule that mediates the cancer growth is not well-defined. Identifying the master regulator that controls CRC growth under HFD can facilitate the development of effective therapeutics for the cancer treatment. In this study, the global lipidomics and RNA sequencing data show that, in the tumor tissues of CRC-bearing mouse models, HFD not only increases tumor weight, but also the palmitic acid level and TLR4 expression, which are reduced when HFD is replaced by control diet. These concomitant changes suggest the roles of palmitic acid and TLR4 in CRC growth. Subsequent studies show that palmitic acid regulates TLR4 expression in PU.1-dependent manner. Knockdown of PU.1 or mutations of PU.1-binding site on TLR4 promoter abolish the palmitic acid-increased TLR4 expression. The role of palmitic acid/PU.1/TLR4 axis in CRC growth is further examined in cell model and animal models that are fed either HFD or palmitic acid-rich diet. More importantly, iTRAQ proteomics data show that knockdown of TLR4 changes the metabolic enzyme profiles in the tumor tissues, which completely abolish the HFD-enhanced ATP production and cancer growth. Our data clearly demonstrate that TLR4 is a master regulator for CRC growth under HFD by programming cancer metabolism.


2022 ◽  
Author(s):  
Lei Wang ◽  
Pan Zhang ◽  
Chao Li ◽  
Fei Xu ◽  
Jie Chen

Obesity-induced colonic inflammation-stimulated colitis is one of the main causes of colorectal cancer. Dietary polysaccharides are considered an effective agent for relieving obesity-induced inflammatory diseases such as diabetes and colitis....


2021 ◽  
Vol 24 (4) ◽  
pp. 431-435
Author(s):  
Eui-Seong Park ◽  
Ting Yu ◽  
Hey-Jin Lee ◽  
Yang-Iee Lim ◽  
Seung-Min Lee ◽  
...  

2018 ◽  
Vol 14 (6) ◽  
pp. 493-495 ◽  
Author(s):  
Sheelarani Karunanithi ◽  
Liraz Levi

FEBS Open Bio ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 2117-2125 ◽  
Author(s):  
Jian Zhang ◽  
Shikui Guo ◽  
Jinyuan Li ◽  
Weimin Bao ◽  
Peng Zhang ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1705
Author(s):  
Carmen Rodríguez-García ◽  
Cristina Sánchez-Quesada ◽  
Ignacio Algarra ◽  
José J. Gaforio

The present study aims to examine the effects of three different high-fat diet (HFD) on mice gut microbiota in order to analyse whether they create the microenvironmental conditions that either promote or prevent colorectal cancer (CRC). We evaluated colonic mucosa-associated microbiota in CD1 mice fed with HFD, based on 60% kcal from fat-containing coconut, sunflower or extra-virgin olive oil as the only source of fat. The main findings were as follows: (a) All HFD produced a decrease in the richness and diversity of the intestinal microbiota that was independent of mouse weight, (b) HFD switched Lactobacillus to Lactococcus. In general, the results showed that both sunflower- and coconut-HFD generated a pro-inflammatory intestinal microenvironment. In brief, coconut-HFD decreased Akkermansia and increased Staphylococcus, Prevotella and Bacteroides spp. abundance. Sunflower-HFD reduced Akkermansia and Bifidobacterium, while enhancing Sphingomonas and Neisseria spp. abundance. In contrast, EVOO-HFD produced an anti-inflammatory microenvironment characterised by a decreased Enterococcus, Staphylococcus, Neisseria and Pseudomonas spp. abundance. At the same time, it increased the Firmicutes/Bacteroidetes ratio and maintained the Akkermansia population. To conclude, EVOO-HFD produced changes in the gut microbiota that are associated with the prevention of CRC, while coconut and sunflower-HFD caused changes associated with an increased risk of CRC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jun Han ◽  
Jing Zhang ◽  
Chengliang Zhang

The hepatotoxicity of irinotecan is drawing wide concern nowadays due to the widespread use of this chemotherapeutic against various solid tumors, particularly metastatic colorectal cancer. Irinotecan-induced hepatotoxicity mainly manifests as transaminase increase and steatosis with or without transaminase increase, and is accompanied by vacuolization, and lobular inflammation. Irinotecan-induced steatohepatitis (IIS) increases the risk of morbidity and mortality in patients with colorectal cancer liver metastasis (CRCLM). The major risks and predisposing factors for IIS include high body mass index (BMI) or obesity, diabetes, and high-fat diet. Mitochondrial dysfunction and autophagy impairment may be involved in the pathogenesis of IIS. However, there is currently no effective preventive or therapeutic treatment for this condition. Thus, the precise mechanisms underlying the pathogenesis of IIS should be deciphered for the development of therapeutic drugs. This review summarizes the current knowledge and research progress on IIS.


2020 ◽  
Vol 318 (3) ◽  
pp. G451-G463 ◽  
Author(s):  
Erika L. Garcia-Villatoro ◽  
Jennifer A. A. DeLuca ◽  
Evelyn S. Callaway ◽  
Kimberly F. Allred ◽  
Laurie A. Davidson ◽  
...  

Consumption of a high-fat diet has been associated with an increased risk of developing colorectal cancer (CRC). However, the effects of the interaction between dietary fat content and the aryl hydrocarbon receptor (AhR) on colorectal carcinogenesis remain unclear. Mainly known for its role in xenobiotic metabolism, AhR has been identified as an important regulator for maintaining intestinal epithelial homeostasis. Although previous research using whole body AhR knockout mice has revealed an increased incidence of colon and cecal tumors, the unique role of AhR activity in intestinal epithelial cells (IECs) and modifying effects of fat content in the diet at different stages of sporadic CRC development are yet to be elucidated. In the present study, we have examined the effects of a high-fat diet on IEC-specific AhR knockout mice in a model of sporadic CRC. Although loss of AhR activity in IECs significantly induced the development of premalignant lesions, in a separate experiment, no significant changes in colon mass incidence were observed. Moreover, consumption of a high-fat diet promoted cell proliferation in crypts at the premalignant colon cancer lesion stage and colon mass multiplicity as well as β-catenin expression and nuclear localization in actively proliferating cells in colon masses. Our data demonstrate the modifying effects of high-fat diet and AhR deletion in IECs on tumor initiation and progression. NEW & NOTEWORTHY Through the use of an intestinal-specific aryl hydrocarbon receptor (AhR) knockout mouse model, this study demonstrates that the expression of AhR in intestinal epithelial cells is required to reduce the formation of premalignant colon cancer lesions. Furthermore, consumption of a high-fat diet and the loss of AhR in intestinal epithelial cells influences the development of colorectal cancer at various stages.


Sign in / Sign up

Export Citation Format

Share Document