scholarly journals FLT3 tyrosine kinase inhibitors synergize with BCL-2 inhibition to eliminate FLT3/ITD acute leukemia cells through BIM activation

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Ruiqi Zhu ◽  
Li Li ◽  
Bao Nguyen ◽  
Jaesung Seo ◽  
Min Wu ◽  
...  

AbstractTyrosine kinase inhibitors (TKIs) targeting FLT3 have shown activity but when used alone have achieved limited success in clinical trials, suggesting the need for combination with other drugs. We investigated the combination of FLT3 TKIs (Gilteritinib or Sorafenib), with Venetoclax, a BCL-2 selective inhibitor (BCL-2i), on FLT3/ITD leukemia cells. The combination of a FLT3 TKI and a BCL-2i synergistically reduced cell proliferation and enhanced apoptosis/cell death in FLT3/ITD cell lines and primary AML samples. Venetoclax also re-sensitized FLT3 TKI-resistant cells to Gilteritinib or Sorafenib treatment, mediated through MAPK pathway inhibition. Gilteritinib treatment alone dissociated BIM from MCL-1 but increased the binding of BIM to BCL-2. Venetoclax treatment enhanced the binding of BIM to MCL-1 but dissociated BIM from BCL-2. Treatment with the drugs together resulted in dissociation of BIM from both BCL-2 and MCL-1, with an increased binding of BIM to the cell death mediator BAX, leading to increased apoptosis. These findings suggest that Venetoclax mitigates the unintended pro-survival effects of FLT3 TKI mainly through the dissociation of BIM and BCL-2 and also decreased BIM expression. This study provides evidence that the addition of BCL-2i enhances the effect of FLT3 TKI therapy in FLT3/ITD AML treatment.

2010 ◽  
Vol 06 (01) ◽  
pp. 43
Author(s):  
Pol Specenier ◽  
Jan B Vermorken ◽  
◽  

Two epidermal growth factor receptor (EGFR)-targeting strategies are used in recurrent and/or metastatic squamous cell cancer of the head and neck (SCCHN): monoclonal antibodies and small-molecule tyrosine kinase inhibitors. Thus far, the monoclonal antibody cetuximab has been studied in most detail. Based on the results of two randomised phase III trials, cetuximab in combination with platinum-based chemotherapy should be considered the new standard first-line regimen for patients with recurrent and/or metastatic disease for whom a platinum-based regimen regimen is considered the best treatment option. Other EGFR-directed monoclonal antibodies are under investigation. The role of EGFR tyrosine kinase inhibitors (TKIs) in SCCHN is less well established and early data on other targeted agents have also been disappointing thus far. Dual pathway inhibition may overcome resistance to single pathway inhibition.


2018 ◽  
Author(s):  
Huan Wang ◽  
Robert P. Sheehan ◽  
Adam C. Palmer ◽  
Robert A. Everley ◽  
Sarah A. Boswell ◽  
...  

SUMMARYTyrosine kinase inhibitors (TKIs) are widely used to treat solid tumors but can be cardiotoxic. The molecular basis for this toxicity and its relationship to therapeutic mechanisms remain unclear; we therefore undertook a systems-level analysis of human cardiomyocytes exposed to four TKIs. Cardiomyocytes (CMs) differentiated from human induced pluripotent stem cells (hiPSCs) were exposed to sunitinib, sorafenib, lapatinib or erlotinib and responses assessed by functional assays, microscopy, RNA sequencing and mass spectrometry (GEO GSE114686; PRIDE PXD012043). TKIs have diverse effects on hiPSC-CMs distinct from inhibition of tyrosine-kinase mediated signal transduction; cardiac metabolism is particularly sensitive. Following Sorafenib treatment, oxidative phosphorylation is down-regulated, resulting in a profound defect in mitochondrial energetics. Cells adapt by upregulating aerobic glycolysis. Adaptation makes cells less acutely sensitive to Sorafenib, but may have long-term negative consequences. Thus, cardiomyocytes exhibit adaptive responses to anti-cancer drugs conceptually similar to those previously shown in tumors to mediate drug resistance.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2511-2511 ◽  
Author(s):  
Anupriya Agarwal ◽  
Ryan J. Meckenzie ◽  
Raffaella Pippa ◽  
Christopher A. Eide ◽  
Jessica Oddo ◽  
...  

Abstract Background The SET oncoprotein, an inhibitor of the protein phosphatase 2A (PP2A), is overexpressed in leukemia cells, preventing PP2A from performing its regulatory role in deactivating signaling proteins by dephosphorylation. Restoration of PP2A activity in both chronic myeloid leukemia (CML) and acute myeloid leukemia (AML) cells to normal levels through shRNA-mediated knockdown of SET results in reduced leukemogenesis. Given the central role of PP2A and SET in regulating various kinase-dependent and -independent downstream signaling pathways, we evaluated the efficacy of SET antagonism in CML and AML cell lines as well as primary patient cells using OP449, a novel, specific, cell-penetrating SET antagonist. Results Treatment of human and murine CML cells with OP449 resulted in dose-dependent increase in PP2A activity and selective inhibition of cell growth (IC50: 0.60 to 1.11 μM), while parental Ba/F3 cells exhibited no measurable cytotoxicity. OP449-mediated decrease in the viability of leukemia cells was significantly rescued by co-treatment with okadaic acid, a PP2A inhibitor, confirming efficacy is mediated through PP2A activation. OP449 was also 3 to 8-fold more potent than FTY720 (a known activator of PP2A) and induced dephosphorylation/degradation of BCR-ABL1, AKT, and STAT5. Importantly, OP449 demonstrated activity against the ABL1 tyrosine kinase inhibitor-resistant BCR-ABL1T315I mutant and the BCR-ABL1E255V/T315I compound mutant (IC50: 1.62 and 1.97 μM, respectively). Consistent with cell line findings, OP449 also inhibited growth of primary cells from CML blastic phase patients harboring either wildtype BCR-ABL1 or BCR-ABL1T315I while normal CD34+ cells exhibited minimal effect. Further, treatment of CML cell lines and primary CD34+ CML cells with OP449 in combination with the ABL1 tyrosine kinase inhibitors showed significantly increased cytotoxicity as compared to each compound alone. For example, treatment of primary CD34+ CML cells with 2.5 μM OP449 or 200 nM nilotinib alone each resulted in a 50% reduction in colony formation, while combination of OP449 and nilotinib at these concentrations reduced colony formation by approximately 87%, suggesting synergistic reduction of clonogenicity (combination index: 0.195). Similar to our findings in CML cells, OP449 increased PP2A activity and suppressed growth in a dose-dependent manner in AML cell lines and primary patient samples harboring various different genetic lesions including FLT3-ITD, CSF1R overexpression, NRASQ61L, and JAK3A572V. Additionally, synergistic inhibition of these cells was observed when OP449 was combined with relevant tyrosine kinase inhibitors and chemotherapy. For example, treatment of MOLM-14 cells (FLT3-ITD) with 2.5 μM OP449 or 1 nM AC220 alone reduced cell viability by 58% and 75%, respectively; combined treatment reduced cell growth 96% (combination index: 0.723). Similarly, treatment of HL-60 cells (NRASQ61L) with 1 μM OP449 or 250 nM cytarabine alone reduced cell viability by 40% and 60%, respectively, whereas combined treatment led to a 94% reduction in viability (combination index: 0.630). Mechanistically, AML patient samples showed significantly increased SET expression compared to normal CD34+ cells, and treatment of AML cells with OP449 reduced phosphorylation of downstream ERK, STAT5, AKT and S6 ribosomal protein signaling. Finally, to evaluate OP449 antitumor efficacy in vivo, we tested OP449 (5 mg/kg intraperitoneally every 3 days) in xenograft mice bearing human HL-60 cell derived tumors. OP449 significantly inhibited tumor growth measured over time and resulted in a >2-fold reduction in tumor burden at the end of the experiment compared to vehicle-treated controls (Day 18: 1.14±0.06 g vs. 0.45±0.08 g, respectively; p<0.001). These results demonstrate the in vivo efficacy of OP449 in a murine leukemia model. Conclusions SET antagonism is selectively cytotoxic to CML and AML cells harboring various genetic lesions and drug-resistant mutations. Our results demonstrate that combined targeting of SET and tyrosine kinases provides more efficient and selective inhibition of leukemia cell growth for a broad range of oncogenic lesions as compared to normal cells. Taken together, our findings suggest a novel therapeutic paradigm of SET antagonism in combination with tyrosine kinase inhibitors for the treatment of CML and AML patients with drug resistance. Disclosures: Agarwal: Oncotide Pharmaceuticals: Research Funding. Tyner:Incyte Corporation: Research Funding. Vitek:Oncotide Pharmaceuticals: Employment. Christensen:Oncotide Pharmaceuticals: Employment. Druker:Ambit Biosciences: Consultancy, PI or co-investigator on Novartis clinical trials. OHSU and Dr. Druker have a financial interest in MolecularMD. OHSU has licensed technology used in some of these clinical trials to MolecularMD. Potential conflicts of interest are managed by OHSU., PI or co-investigator on Novartis clinical trials. OHSU and Dr. Druker have a financial interest in MolecularMD. OHSU has licensed technology used in some of these clinical trials to MolecularMD. Potential conflicts of interest are managed by OHSU. Other; Bristol-Myers Squibb/Novartis: Currently PI or co-I on Novartis & Bristol-Myers Squibb clinical trials. His institution has contracts with these companies to pay for patient costs, nurse and data manager salaries, and institutional overhead. He does not derive salary, nor does his lab Other; Oncotide Pharmaceuticals: Research Funding, Subaward from NIH STTR, Subaward from NIH STTR Other.


Author(s):  
G. Kéri ◽  
L. ôrfi ◽  
F. Hollósy ◽  
T. Vántus ◽  
J. érchegyi ◽  
...  

2015 ◽  
Vol 25 (7) ◽  
pp. 1224-1231 ◽  
Author(s):  
Stacey Jamieson ◽  
Peter J. Fuller

ObjectiveGranulosa cell tumors of the ovary (GCTs) represent a specific subset of malignant ovarian tumors, of which there are 2 distinct subtypes, the juvenile and the adult form. Aside from surgery, no reliable therapeutic options currently exist for patients with GCT. This study sought to investigate the potential role of small molecule tyrosine kinase inhibitors (TKIs) as novel therapeutics in the clinical management of GCT.Materials and MethodsUsing TKI with distinct but overlapping multitargeted specificities, cellular proliferation, viability, and apoptosis were evaluated in 2 human GCT-derived cell lines, COV434 and KGN.ResultsSunitinib, which targets the imatinib-inhibited tyrosine kinases of VEGFR, KIT, PDGFR, and FLT-3, was without effect in COV434 and KGN cell lines. Sorafenib, which has a high affinity for RAF1 and BRAF, dose dependently inhibited cellular proliferation and viability in both cell lines at concentrations equivalent to that seen in other systems. A RAF1 kinase inhibitor was without effect, suggesting that sorafenib is acting via inhibition of BRAF, or that aberrant signaling originates upstream of BRAF in the MAPK pathway. In the presence of a selective Src family inhibitor (SU6656), cell proliferation and cell viability responses dissociated; that is, although SU6656 dose dependently inhibited cell viability, it had limited effect on proliferation and apoptosis.ConclusionsThese findings implicate BRAF in the activated signaling responsible for the growth and viability of GCT and suggest that TKI already in clinical use may be a therapeutic option in the treatment of GCT.


Sign in / Sign up

Export Citation Format

Share Document