scholarly journals Repetitive negative thinking in daily life and functional connectivity among default mode, fronto-parietal, and salience networks

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
D. M. Lydon-Staley ◽  
C. Kuehner ◽  
V. Zamoscik ◽  
S. Huffziger ◽  
P. Kirsch ◽  
...  

Abstract Repetitive negative thinking (RNT) is a maladaptive response to sadness and a transdiagnostic risk-factor. A critical challenge hampering attempts to promote more adaptive responses to sadness is that the between-person characteristics associated with the tendency for RNT remain uncharacterized. From the perspective of the impaired disengagement hypothesis, we examine between-person differences in blood-oxygen-level-dependent (BOLD) functional networks underlying cognitive conflict signaling, self-referential thought, and cognitive flexibility, and the association between sadness and RNT in daily life. We pair functional magnetic resonance imaging with ambulatory assessments deployed 10 times per day over 4 consecutive days measuring momentary sadness and RNT from 58 participants (40 female, mean age = 36.69 years; 29 remitted from a lifetime episode of Major Depression) in a multilevel model. We show that RNT increases following sadness for participants with higher than average between-network connectivity of the default mode network and the fronto-parietal network. We also show that RNT increases following increases in sadness for participants with lower than average between-network connectivity of the fronto-parietal network and the salience network. We also find that flexibility of the salience network’s pattern of connections with brain regions is protective against increases in RNT following sadness. Our findings highlight the importance of functional brain networks implicated in cognitive conflict signaling, self-referential thought, and cognitive flexibility for understanding maladaptive responses to sadness in daily life and provide support for the impaired disengagement hypothesis of RNT.

2018 ◽  
Author(s):  
David M. Lydon-Staley ◽  
Christine Kuehner ◽  
Vera Zamoscik ◽  
Silke Huffziger ◽  
Peter Kirsch ◽  
...  

Rumination, the perseverative thinking about one’s problems and emotions, is a maladaptive response to sadness and a risk factor for the development and course of depression. A critical challenge hampering attempts to promote more adaptive responses to sadness is that the between-person characteristics associated with the tendency to ruminate following depressed mood remain uncharacterized. We examine the importance of between-person differences in blood-oxygen-level dependent (BOLD) functional networks underlying cognitive control for the moment-to-moment association between sadness and rumination in daily life. We pair functional magnetic resonance imaging with ambulatory assessments measuring momentary sadness and rumination deployed 10 times per day over 4 consecutive days from 58 participants (40 female, mean age = 36.69 years; 29 remitted from a lifetime episode of Major Depression). Using a multilevel model, we show that rumination increases following increases in sadness for participants with higher than average between-network connectivity of the default mode network and the fronto-parietal network. We also show that rumination increases following increases in sadness for participants with lower than average between-network connectivity of the fronto- parietal network and the salience network. In addition, we find that the flexibility of the salience network’s pattern of connections with brain regions across time is protective against increases in rumination following sadness. Our findings highlight the importance of the neural correlates of cognitive control for understanding maladaptive responses to sadness and also support the value of large-scale functional connectivity networks for understanding cognitive-affective behaviors as they naturally occur during the course of daily life.


2017 ◽  
Vol 114 (48) ◽  
pp. 12821-12826 ◽  
Author(s):  
Deniz Vatansever ◽  
David K. Menon ◽  
Emmanuel A. Stamatakis

Concurrent with mental processes that require rigorous computation and control, a series of automated decisions and actions govern our daily lives, providing efficient and adaptive responses to environmental demands. Using a cognitive flexibility task, we show that a set of brain regions collectively known as the default mode network plays a crucial role in such “autopilot” behavior, i.e., when rapidly selecting appropriate responses under predictable behavioral contexts. While applying learned rules, the default mode network shows both greater activity and connectivity. Furthermore, functional interactions between this network and hippocampal and parahippocampal areas as well as primary visual cortex correlate with the speed of accurate responses. These findings indicate a memory-based “autopilot role” for the default mode network, which may have important implications for our current understanding of healthy and adaptive brain processing.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ramana V. Vishnubhotla ◽  
Rupa Radhakrishnan ◽  
Kestas Kveraga ◽  
Rachael Deardorff ◽  
Chithra Ram ◽  
...  

Purpose: The purpose of this study was to investigate the effect of an intensive 8-day Samyama meditation program on the brain functional connectivity using resting-state functional MRI (rs-fMRI).Methods: Thirteen Samyama program participants (meditators) and 4 controls underwent fMRI brain scans before and after the 8-day residential meditation program. Subjects underwent fMRI with a blood oxygen level dependent (BOLD) contrast at rest and during focused breathing. Changes in network connectivity before and after Samyama program were evaluated. In addition, validated psychological metrics were correlated with changes in functional connectivity.Results: Meditators showed significantly increased network connectivity between the salience network (SN) and default mode network (DMN) after the Samyama program (p < 0.01). Increased connectivity within the SN correlated with an improvement in self-reported mindfulness scores (p < 0.01).Conclusion: Samyama, an intensive silent meditation program, favorably increased the resting-state functional connectivity between the salience and default mode networks. During focused breath watching, meditators had lower intra-network connectivity in specific networks. Furthermore, increased intra-network connectivity correlated with improved self-reported mindfulness after Samyama.Clinical Trials Registration: [https://clinicaltrials.gov], Identifier: [NCT04366544]. Registered on 4/17/2020.


2012 ◽  
Vol 24 (9) ◽  
pp. 1960-1970 ◽  
Author(s):  
Linh C. Dang ◽  
Aneesh Donde ◽  
Cindee Madison ◽  
James P. O'Neil ◽  
William J. Jagust

Cognitive flexibility or the ability to change behavior in response to external cues is conceptualized as two processes: one for shifting between perceptual features of objects and another for shifting between the abstract rules governing the selection of these objects. Object and rule shifts are believed to engage distinct anatomical structures and functional processes. Dopamine activity has been associated with cognitive flexibility, but patients with dopaminergic deficits are not impaired on all tasks assessing cognitive flexibility, suggesting that dopamine may have different roles in the shifting of objects and rules. The goals of this study were to identify brain regions supporting object and rule shifts and to examine the role of dopamine in modulating these two forms of cognitive flexibility. Sixteen young, healthy volunteers underwent fMRI while performing a set-shift task designed to differentiate shifting between object features from shifting between abstract task rules. Participants also underwent PET with 6-[18F]-fluoro-l-m-tyrosine (FMT), a radiotracer measuring dopamine synthesis capacity. Shifts of abstract rules were not associated with activation in any brain region, and FMT uptake did not correlate with rule shift performance. Shifting between object features deactivated the medial PFC and the posterior cingulate and activated the lateral PFC, posterior parietal areas, and the striatum. FMT signal in the striatum correlated negatively with object shift performance and deactivation in the medial PFC, a component of the default mode network, suggesting that dopamine influences object shifts via modulation of activity in the default mode network.


2019 ◽  
Author(s):  
Tabea Rosenkranz ◽  
Keisuke Takano ◽  
Edward R Watkins ◽  
Thomas Ehring

Repetitive negative thinking (RNT) is a transdiagnostic process and a promising target for prevention and treatment of mental disorders. RNT is typically assessed via self-report ques-tionnaires with most studies focusing on one type of RNT (i.e., worry or rumination) and one specific disorder (i.e., anxiety or depression). However, responses to such questionnaires may be biased by memory and metacognitive beliefs. Recently, Ecological Momentary Assessment (EMA) has been employed to minimize these biases. This study aims to develop an EMA paradigm to measure RNT as a transdiagnostic process in natural settings. Based on empirical and theoretical considerations, an item pool was created encompassing RNT content and processes. We then (1) tested model fit of a content-related and a process-related model for assessing RNT as an individual difference variable, (2) investigated the reliability and construct validity of the proposed scale(s), and (3) determined the optimal sampling design. One hundred fifty healthy participants aged 18 to 40 years filled out baseline questionnaires on rumination, worry, RNT, symptoms of depression, anxiety, and stress. Participants received 8 semi-random daily prompts assessing RNT over 14 days. After the EMA phase, participants answered questionnaires on depression, anxiety, and stress again.Multilevel confirmatory factor analysis revealed excellent model fit for the process-related model but unsatisfactory fit for the content-related model. Different hybrid models were addi-tionally explored, yielding one model with satisfactory fit. Both the process-related and the hybrid scale showed good reliability and good convergent validity and were significantly as-sociated with symptoms of depression, anxiety, and stress after the EMA phase when con-trolling for baseline scores. Further analyses found that a sampling design of 5 daily assess-ments across 10 days yielded the best tradeoff between participant burden and information retained by EMA. In sum, this paper presents a promising paradigm for assessing RNT in daily life.


2019 ◽  
Vol 3 (s1) ◽  
pp. 17-18
Author(s):  
Rajpreet Chahal ◽  
Scott Marek ◽  
Veronika Vilgis ◽  
David Weissman ◽  
Paul Hastings ◽  
...  

OBJECTIVES/SPECIFIC AIMS: Earlier pubertal timing has been associated with risk for depression, particularly in girls (e.g., Keenan etal., 2014). Evidence suggests pubertal timing in girls also relates to alterations in the microstructural properties of brain white matter tracts in late adolescence (Chahal etal., 2018), and structural connectivity of cingulate and frontal regions (Chahal etal., in prep), though differences in pubertal development in both boys and girls have not been examined in the context of brain functional connectivity (FC). Individual differences in the course of puberty may have enduring effects on functional coupling among brain regions that may contribute to the risk for psychopathology. To address this question, we explored the relation between pubertal timing and tempo with depression symptoms (age 16). Then, we examined whether brain network FC (age 16) associates with pubertal indices and predicts concurrent and later depressive symptoms (age 18). METHODS/STUDY POPULATION: Sixty-eight adolescents (37 females) completed the Mini-Mood and Anxiety Symptom Questionnaire (MASQ; Clark & Watson, 1995) at ages 14-18. Gompertz growth curve modelling of pubertal development (age 10-15; Waves 1-6) was used to estimate pubertal timing and tempo per individual, separately for males and females (e.g., Chahal etal., 2018). Resting-state MRI data (age 16) were parcellated into 264 cortical and subcortical regions to create region-to-region FC matrices based on correlations of time-series. Individual matrices were fed to the GraphVar program (Kruschwitz etal., 2015) to assess the interaction of pubertal timing and pubertal tempo with functional network connectivity using Network-based statistic (NBS; Zalesky etal., 2010). Subnetworks showing alterations in relation to pubertal timing and tempo were then examined in association with concurrent (age 16) symptoms and used to predict future depressive symptoms (age 18). RESULTS/ANTICIPATED RESULTS: In all youth, earlier pubertal timing was associated with higher depressive symptoms at age 16 (p<.018). This association was stronger in girls with slower pubertal tempo (p<.039). Interregional connectivity analyses revealed that the interaction of earlier pubertal timing and slower tempo was associated with lower FC between the left cingulate gyrus and right precuneus (p<.0001), regions implicated in emotion processing (i.e., Affective Processing Network) and self-referential thinking (i.e., Default Mode Network). FC of the three other emotion- and self-referential processing network regions (i.g., left insula, superior parietal lobule, and precuneus) was lower in youth with greater age 16 depressive symptoms (p<.0001). Finally, lower FC of of the left and right inferior parietal lobule predicted greater depressive symptoms at age 18 (p<.0001). In summary, FC of overlapping affective and default mode network areas was related to earlier pubertal timing and higher concurrent and future depressive symptoms. DISCUSSION/SIGNIFICANCE OF IMPACT: These findings demonstrate individual differences in pubertal maturation are associated with depressive symptoms and differences in brain connectivity in mid-adolescence. Early pubertal development was associated with greater depression symptoms and lower FC of brain regions involved in emotion regulation and self-referential processing. Further, FC between these regions predicted higher depression symptoms two years later. These neurobiological mechanisms may, in part, underlie the link between off-time pubertal development and the risk for depression. These findings also have important implications for precision psychiatry, as we show that a risk-factor of depression (early pubertal timing) may manifest in developing neurobiology in region-specific ways. Previous network models of depression (e.g., Li etal., 2018) implicated affective network connectivity in sustained negative mood and the default mode/ self-referential network in rumination. Other networks implicated in these past models include the reward network, which may be involved in anhedonia and loss of pleasure. Our study only found associations between affective and self-referential regional connectivity, pubertal maturation, and depression, suggesting that pubertal risk factors may relate more closely with emotion-regulation and self-referential processing deficits.


2018 ◽  
Vol 48 (14) ◽  
pp. 2364-2374 ◽  
Author(s):  
Vera Eva Zamoscik ◽  
Stephanie Nicole Lyn Schmidt ◽  
Martin Fungisai Gerchen ◽  
Christos Samsouris ◽  
Christina Timm ◽  
...  

AbstractBackgroundStudies with healthy participants and patients with respiratory diseases suggest a relation between respiration and mood. The aim of the present analyses was to investigate whether emotionally challenged remitted depressed participants show higher respiration pattern variability (RPV) and whether this is related to mood, clinical outcome and increased default mode network connectivity.MethodsTo challenge participants, sad mood was induced with keywords of personal negative life events in individuals with remitted depression [recurrent major depressive disorder (rMDD),n= 30] and matched healthy controls (HCs,n= 30) during functional magnetic resonance imaging. Respiration was measured by means of a built-in respiration belt. Additionally, questionnaires, a daily life assessment of mood and a 3 years follow-up were applied. For replication, we analysed RPV in an independent sample of 53 rMDD who underwent the same fMRI paradigm.ResultsDuring sad mood, rMDD compared with HC showed greater RPV, with higher variability in pause duration and respiration frequency and lower expiration to inspiration ratio. Higher RPV was related to lower daily life mood and predicted higher depression scores as well as relapses during a 3-year follow-up period. Furthermore, in rMDD compared with HC higher main respiration frequency exhibited a more positive association with connectivity of the posterior cingulate cortex and the right parahippocampal gyrus.ConclusionsThe results suggest a relation between RPV, mood and depression on the behavioural and neural level. Based on our findings, we propose interventions focusing on respiration to be a promising additional tool in the treatment of depression.


2013 ◽  
Vol 44 (10) ◽  
pp. 2041-2051 ◽  
Author(s):  
F. Sambataro ◽  
N. D. Wolf ◽  
M. Pennuto ◽  
N. Vasic ◽  
R. C. Wolf

BackgroundMajor depressive disorder (MDD) is characterized by alterations in brain function that are identifiable also during the brain's ‘resting state’. One functional network that is disrupted in this disorder is the default mode network (DMN), a set of large-scale connected brain regions that oscillate with low-frequency fluctuations and are more active during rest relative to a goal-directed task. Recent studies support the idea that the DMN is not a unitary system, but rather is composed of smaller and distinct functional subsystems that interact with each other. The functional relevance of these subsystems in depression, however, is unclear.MethodHere, we investigated the functional connectivity of distinct DMN subsystems and their interplay in depression using resting-state functional magnetic resonance imaging.ResultsWe show that patients with MDD exhibit increased within-network connectivity in posterior, ventral and core DMN subsystems along with reduced interplay from the anterior to the ventral DMN subsystems.ConclusionsThese data suggest that MDD is characterized by alterations of subsystems within the DMN as well as of their interactions. Our findings highlight a critical role of DMN circuitry in the pathophysiology of MDD, thus suggesting these subsystems as potential therapeutic targets.


2009 ◽  
Vol 24 (S1) ◽  
pp. 1-1
Author(s):  
K. Verébová ◽  
J. Horáček

Background:Temporal correlations in the blood oxygen level-dependent (BOLD) signal oscillations of widely separated brain regions are presumed to reflect intrinsic functional connectivity and have been demonstrated across several distinct networks serving different functions. Impaired connectivity or disturbed integration of neural activity, as seen in brain networks in schizophrenia, might influence the symptoms of the disorder and biologically implicates in temporal and spatial alterations in BOLD signal fluctuations.The objective of this study is to examine the activity of a temporal lobe and default modes during working memory task in schizophrenic patients. These two networks were selected because both have been previously studied.Methods:Patients with schizophrenia and healthy comparison subjects undergo functional magnetic resonance imaging (fMRI) scanning while performing a verbal working memory “n-back” task. All subjects receive identical training in task performance prior to scanning. Independent component analysis will be used to identify the default mode and temporal lobe component. Spatial and temporal aspects of the networks will be examined in patients versus healthy control subjects.Results:Data collection and statistical evaluation will proceed until October 2008.Conclusions:Identifying specific activation patterns for the temporal lobe and default mode components may contribute to the identification of a trait-related marker for schizophrenia and improve diagnostic sensitivity and specificity.


Sign in / Sign up

Export Citation Format

Share Document