scholarly journals DNA methylation of HPA-axis genes and the onset of major depressive disorder in adolescent girls: a prospective analysis

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kathryn L. Humphreys ◽  
Sarah R. Moore ◽  
Elena Goetz Davis ◽  
Julie L. MacIsaac ◽  
David T. S. Lin ◽  
...  

Abstract The stress response system is disrupted in individuals with major depressive disorder (MDD) as well as in those at elevated risk for developing MDD. We examined whether DNA methylation (DNAm) levels of CpG sites within HPA-axis genes predict the onset of MDD. Seventy-seven girls, approximately half (n = 37) of whom were at familial risk for MDD, were followed longitudinally. Saliva samples were taken in adolescence (M age = 13.06 years [SD = 1.52]) when participants had no current or past MDD diagnosis. Diagnostic interviews were administered approximately every 18 months until the first onset of MDD or early adulthood (M age of last follow-up = 19.23 years [SD = 2.69]). We quantified DNAm in saliva samples using the Illumina EPIC chip and examined CpG sites within six key HPA-axis genes (NR3C1, NR3C2, CRH, CRHR1, CRHR2, FKBP5) alongside 59 genotypes for tagging SNPs capturing cis genetic variability. DNAm levels within CpG sites in NR3C1, CRH, CRHR1, and CRHR2 were associated with risk for MDD across adolescence and young adulthood. To rule out the possibility that findings were merely due to the contribution of genetic variability, we re-analyzed the data controlling for cis genetic variation within these candidate genes. Importantly, methylation levels in these CpG sites continued to significantly predict the onset of MDD, suggesting that variation in the epigenome, independent of proximal genetic variants, prospectively predicts the onset of MDD. These findings suggest that variation in the HPA axis at the level of the methylome may predict the development of MDD.

Author(s):  
Andreas Menke

Major depressive disorder (MDD) is a common, serious and in some cases life‐threatening condition and affects approximately 350 million people globally (Otte et al., 2016). The magnitude of the clinical burden reflects the limited effectiveness of current available therapies. The current prescribed antidepressants are based on modulating monoaminergic neurotransmission, i.e. they improve central availability of serotonin, norepinephrine and dopamine. However, they are associated with a high rate of partial or non-response, delayed response onset and limited duration. Actually more than 50% of the patients fail to respond to their first antidepressant they receive. Therefore there is a need of new treatment approaches targeting other systems than the monoaminergic pathway. One of the most robust findings in biological psychiatry is a dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis in major depression (Holsboer, 2000). Many studies observed an increased production of the corticotropin-releasing hormone (CRH) in the hypothalamus, leading to an increased release of adrenocorticotropic hormone (ACTH) from the pituitary and subsequently to an enhanced production of cortisol in the adrenal cortex. Due to an impaired sensitivity of the glucocorticoid receptor (GR) the negative feedback mechanisms usually restoring homeostasis after a stress triggered cortisol release are not functioning properly (Holsboer, 2000, Pariante and Miller, 2001). However, treatment strategies targeting the GR or the CRH receptors have not been successful for a general patient population. Selecting the right patients for these treatment alternatives may improve therapy outcome, since a dysregulation of the HPA axis affects only 40-60 % of the depressed patients. Thus, patients with a dysregulated HPA axis have first to be identified and then allocated to a specific treatment regime. Tests like the dexamethasone-suppression-test (DST) or the dex-CRH test have been shown to uncover GR sensitivity deficits, but are not routinely applied in the clinical setting. Recently, the dexamethasone-induced gene expression could uncover GR alterations in participants suffering from major depression and job-related exhaustion (Menke et al., 2012, Menke et al., 2013, Menke et al., 2014, Menke et al., 2016). Actually, by applying the dexamethasone-stimulation test we found a GR hyposensitivity in depressed patients (Menke et al., 2012) and a GR hypersensitivity in subjects with job-related exhaustion (Menke et al., 2014). These alterations normalized after clinical recovery (Menke et al., 2014). Interestingly, the dexamethasone-stimulation test also uncovered FKBP5 genotype dependent alterations in FKBP5 mRNA expression in depressed patients and healthy controls (Menke et al., 2013). FKBP5 is a co-chaperone which modulates the sensitivity of the GR (Binder, 2009). In addition, the dexamethasone-stimulation test provided evidence of common genetic variants that modulate the immediate transcriptional response to GR activation in peripheral human blood cells and increase the risk for depression and co-heritable psychiatric disorders (Arloth et al., 2015). In conclusion, the molecular dexamethasone-stimulation test may thus help to characterize subgroups of subjects suffering from stress-related conditions and in the long-run may be helpful to guide treatment regime as well as prevention strategies.   References: Arloth J, Bogdan R, Weber P, Frishman G, Menke A, Wagner KV, Balsevich G, Schmidt MV, Karbalai N, Czamara D, Altmann A, Trumbach D, Wurst W, Mehta D, Uhr M, Klengel T, Erhardt A, Carey CE, Conley ED, Major Depressive Disorder Working Group of the Psychiatric Genomics C, Ruepp A, Muller-Myhsok B, Hariri AR, Binder EB, Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium PGC (2015) Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders. Neuron 86:1189-1202. Binder EB (2009) The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology 34 Suppl 1:S186-195. Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23:477-501. Menke A, Arloth J, Best J, Namendorf C, Gerlach T, Czamara D, Lucae S, Dunlop BW, Crowe TM, Garlow SJ, Nemeroff CB, Ritchie JC, Craighead WE, Mayberg HS, Rex-Haffner M, Binder EB, Uhr M (2016) Time-dependent effects of dexamethasone plasma concentrations on glucocorticoid receptor challenge tests. Psychoneuroendocrinology 69:161-171. Menke A, Arloth J, Gerber M, Rex-Haffner M, Uhr M, Holsboer F, Binder EB, Holsboer-Trachsler E, Beck J (2014) Dexamethasone stimulated gene expression in peripheral blood indicates glucocorticoid-receptor hypersensitivity in job-related exhaustion. Psychoneuroendocrinology 44:35-46. Menke A, Arloth J, Putz B, Weber P, Klengel T, Mehta D, Gonik M, Rex-Haffner M, Rubel J, Uhr M, Lucae S, Deussing JM, Muller-Myhsok B, Holsboer F, Binder EB (2012) Dexamethasone Stimulated Gene Expression in Peripheral Blood is a Sensitive Marker for Glucocorticoid Receptor Resistance in Depressed Patients. Neuropsychopharmacology 37:1455-1464. Menke A, Klengel T, Rubel J, Bruckl T, Pfister H, Lucae S, Uhr M, Holsboer F, Binder EB (2013) Genetic variation in FKBP5 associated with the extent of stress hormone dysregulation in major depression. Genes Brain Behav  12:289-296. Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, Mohr DC, Schatzberg AF (2016) Major depressive disorder. Nature reviews Disease primers 2:16065. Pariante CM, Miller AH (2001) Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biological psychiatry 49:391-404.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jiaqi Zhou ◽  
Miao Li ◽  
Xueying Wang ◽  
Yuwen He ◽  
Yan Xia ◽  
...  

Pharmacotherapy is the most common treatment for schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). Pharmacogenetic studies have achieved results with limited clinical utility. DNA methylation (DNAm), an epigenetic modification, has been proposed to be involved in both the pathology and drug treatment of these disorders. Emerging data indicates that DNAm could be used as a predictor of drug response for psychiatric disorders. In this study, we performed a systematic review to evaluate the reproducibility of published changes of drug response-related DNAm in SCZ, BD and MDD. A total of 37 publications were included. Since the studies involved patients of different treatment stages, we partitioned them into three groups based on their primary focuses: (1) medication-induced DNAm changes (n = 8); (2) the relationship between DNAm and clinical improvement (n = 24); and (3) comparison of DNAm status across different medications (n = 14). We found that only BDNF was consistent with the DNAm changes detected in four independent studies for MDD. It was positively correlated with clinical improvement in MDD. To develop better predictive DNAm factors for drug response, we also discussed future research strategies, including experimental, analytical procedures and statistical criteria. Our review shows promising possibilities for using BDNF DNAm as a predictor of antidepressant treatment response for MDD, while more pharmacoepigenetic studies are needed for treatments of various diseases. Future research should take advantage of a system-wide analysis with a strict and standard analytical procedure.


2021 ◽  
pp. 1-6
Author(s):  
JianLi Wang ◽  
Debiao Liu ◽  
Guoling Li ◽  
Jin Zhu ◽  
Song Yue ◽  
...  

Abstract Background Self-efficacy is a pivotal factor in the etiology and prognosis of major depression. However, longitudinal studies on the relationship between self-efficacy and major depressive disorder (MDD) are scarce. The objectives were to investigate: (1) the associations between self-efficacy and the 1-year and 2-year risks of first onset of MDD and (2) the associations between self-efficacy and the 1-year and 2-year risks of the persistence/recurrence of MDD, in a sample of first-year university students. Methods We followed 8079 first-year university students for 2 years from April 2018 to October 2020. MDD was ascertained by the Chinese version of the Composite International Diagnostic Interview (CIDI-3.0) based on self-report. Self-efficacy was measured by the 10-item General Self-efficacy (GSE) scale. Random effect logistic regression modeling was used to estimate the associations. Results Among participants without a lifetime MDD, the data showed that participants with high baseline GSE scores were associated with a higher risk of first onset of MDD over 2 years [odds ratio (OR) 1.04, 95% confidence interval (CI) 1.01–1.08]. Among those with a lifetime MDD, participants with high baseline GSE scores were less likely to have had a MDD over 2 years (OR 0.93, 95% CI 0.88–0.99) compared to others. Conclusions A high level of GSE may be protective of the risk of persistent or recurrent MDD. More longitudinal studies in university students are needed to further investigate the impact of GSE on the first onset of MDD.


2015 ◽  
Vol 78 (1) ◽  
pp. 58-66 ◽  
Author(s):  
Martina Papmeyer ◽  
Stephen Giles ◽  
Jessica E. Sussmann ◽  
Shauna Kielty ◽  
Tiffany Stewart ◽  
...  

2008 ◽  
Vol 65 (5) ◽  
pp. 513 ◽  
Author(s):  
William W. Eaton ◽  
Huibo Shao ◽  
Gerald Nestadt ◽  
Ben Hochang Lee ◽  
O. Joseph Bienvenu ◽  
...  

2016 ◽  
Vol 46 (11) ◽  
pp. 2351-2361 ◽  
Author(s):  
T. Nickson ◽  
S. W. Y. Chan ◽  
M. Papmeyer ◽  
L. Romaniuk ◽  
A. Macdonald ◽  
...  

BackgroundPrevious neuroimaging studies indicate abnormalities in cortico-limbic circuitry in mood disorder. Here we employ prospective longitudinal voxel-based morphometry to examine the trajectory of these abnormalities during early stages of illness development.MethodUnaffected individuals (16–25 years) at high and low familial risk of mood disorder underwent structural brain imaging on two occasions 2 years apart. Further clinical assessment was conducted 2 years after the second scan (time 3). Clinical outcome data at time 3 was used to categorize individuals: (i) healthy controls (‘low risk’, n = 48); (ii) high-risk individuals who remained well (HR well, n = 53); and (iii) high-risk individuals who developed a major depressive disorder (HR MDD, n = 30). Groups were compared using longitudinal voxel-based morphometry. We also examined whether progress to illness was associated with changes in other potential risk markers (personality traits, symptoms scores and baseline measures of childhood trauma), and whether any changes in brain structure could be indexed using these measures.ResultsSignificant decreases in right amygdala grey matter were found in HR MDD v. controls (p = 0.001) and v. HR well (p = 0.005). This structural change was not related to measures of childhood trauma, symptom severity or measures of sub-diagnostic anxiety, neuroticism or extraversion, although cross-sectionally these measures significantly differentiated the groups at baseline.ConclusionsThese longitudinal findings implicate structural amygdala changes in the neurobiology of mood disorder. They also provide a potential biomarker for risk stratification capturing additional information beyond clinically ascertained measures.


Sign in / Sign up

Export Citation Format

Share Document