scholarly journals Hair glucocorticoids are associated with childhood adversity, depressive symptoms and reduced global and lobar grey matter in Generation Scotland

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Claire Green ◽  
Aleks Stolicyn ◽  
Mathew A. Harris ◽  
Xueyi Shen ◽  
Liana Romaniuk ◽  
...  

AbstractHypothalamic–pituitary–adrenal (HPA) axis dysregulation has been commonly reported in major depressive disorder (MDD), but with considerable heterogeneity of results; potentially due to the predominant use of acute measures of an inherently variable/phasic system. Chronic longer-term measures of HPA-axis activity have yet to be systematically examined in MDD, particularly in relation to brain phenotypes, and in the context of early-life/contemporaneous stress. Here, we utilise a temporally stable measure of cumulative HPA-axis function (hair glucocorticoids) to investigate associations between cortisol, cortisone and total glucocorticoids with concurrent measures of (i) lifetime-MDD case/control status and current symptom severity, (ii) early/current-life stress and (iii) structural neuroimaging phenotypes, in N = 993 individuals from Generation Scotland (mean age = 59.1 yrs). Increased levels of hair cortisol were significantly associated with reduced global and lobar brain volumes with reductions in the frontal, temporal and cingulate regions (βrange = −0.057 to −0.104, all PFDR < 0.05). Increased levels of hair cortisone were significantly associated with MDD (lifetime-MDD status, current symptoms, and severity; βrange = 0.071 to 0.115, all PFDR = < 0.05), with early-life adversity (β = 0.083, P = 0.017), and with reduced global and regional brain volumes (global: β = −0.059, P = 0.043; nucleus accumbens: β = −0.075, PFDR = 0.044). Associations with total glucocorticoids followed a similar pattern to the cortisol findings. In this large community-based sample, elevated glucocorticoids were significantly associated with MDD, with early, but not later-life stress, and with reduced global and regional brain phenotypes. These findings provide important foundations for future mechanistic studies to formally explore causal relationships between early adversity, chronic rather than acute measures of glucocorticoids, and neurobiological associations relevant to the aetiology of MDD.

2014 ◽  
Vol 28 (4) ◽  
pp. 372-390 ◽  
Author(s):  
Nadya Dich ◽  
Åse Marie Hansen ◽  
Kirsten Avlund ◽  
Rikke Lund ◽  
Erik Lykke Mortensen ◽  
...  

2019 ◽  
Vol 79 (1) ◽  
pp. 113-132 ◽  
Author(s):  
Marion Rincel ◽  
Muriel Darnaudéry

The developmental period constitutes a critical window of sensitivity to stress. Indeed, early-life adversity increases the risk to develop psychiatric diseases, but also gastrointestinal disorders such as the irritable bowel syndrome at adulthood. In the past decade, there has been huge interest in the gut–brain axis, especially as regards stress-related emotional behaviours. Animal models of early-life adversity, in particular, maternal separation (MS) in rodents, demonstrate lasting deleterious effects on both the gut and the brain. Here, we review the effects of MS on both systems with a focus on stress-related behaviours. In addition, we discuss more recent findings showing the impact of gut-directed interventions, including nutrition with pre- and probiotics, illustrating the role played by gut microbiota in mediating the long-term effects of MS. Overall, preclinical studies suggest that nutritional approaches with pro- and prebiotics may constitute safe and efficient strategies to attenuate the effects of early-life stress on the gut–brain axis. Further research is required to understand the complex mechanisms underlying gut–brain interaction dysfunctions after early-life stress as well as to determine the beneficial impact of gut-directed strategies in a context of early-life adversity in human subjects.


2021 ◽  
Author(s):  
Niki H. Kamkar ◽  
Cassandra J Lowe ◽  
J. Bruce Morton

Although there is an abundance of evidence linking the function of the hypothalamic-pituitary-adrenal (HPA) axis to adverse early-life experiences, the precise nature of the association remains unclear. Some evidence suggests early-life adversity leads to cortisol hyper-reactivity, while other evidence suggests adversity leads to cortisol hypo-reactivity. Here, we distinguish between trauma and adversity, and use p-curves to interrogate the conflicting literature. In Study 1, trauma was operationalized according to DSM-5 criteria; the p-curve analysis included 68 articles and revealed that the literature reporting associations between trauma and blunted cortisol reactivity contains evidential value. Study 2 examined the relationship between adversity and cortisol reactivity. Thirty articles were included in the analysis, and p-curve demonstrated that adversity is related to heightened cortisol reactivity. These results support an inverted U-shaped function relating severity of adversity and cortisol reactivity, and underscore the importance of distinguishing between “trauma” and “adversity”.


Author(s):  
Mario F. Juruena ◽  
Filip Eror ◽  
Anthony J. Cleare ◽  
Allan H. Young

2019 ◽  
Vol 222 (6) ◽  
pp. jeb187039 ◽  
Author(s):  
David J. Walker ◽  
Cédric Zimmer ◽  
Maria Larriva ◽  
Susan D. Healy ◽  
Karen A. Spencer

2019 ◽  
Vol 41 (1) ◽  
pp. 158-186 ◽  
Author(s):  
Georgia Verropoulou ◽  
Eleni Serafetinidou ◽  
Cleon Tsimbos

AbstractThe aims of the present study are twofold: first, to examine the importance of socio-economic disadvantage, adverse experiences and poor health in childhood on later-life depression by sex and, second, to discern the direct and indirect effects of childhood circumstances using a decomposition technique. Data are derived from Waves 2 and 3 of the Survey of Health, Ageing and Retirement in Europe (SHARE). The methods involve use of logistic regression models and a decomposition approach. The findings indicate that childhood socio-economic status (SES) for both genders and cognitive function for men have only a significant direct effect, consistent with the critical period model. Childhood health for men and poor parental mental health for women are nearly fully mediated by adulthood and later-life circumstances, a fact in line with the pathway model. Poor childhood health, parental excessive alcohol consumption and cognitive function for women and adverse experiences for men have both significant direct and indirect effects, consistent with both models. Mediating factors include poor adulthood and later-life health, socio-economic adversity and stress; adulthood and later-life SES mediate early life health and adverse experiences more strongly for men, whereas stress seems to mediate early life adverse experiences to a greater extent among women. Intervening policies should address childhood adversity while considering the differential vulnerability of men and women.


2020 ◽  
Vol 21 (19) ◽  
pp. 7212
Author(s):  
Mayumi Nishi

Early-life stress during the prenatal and postnatal periods affects the formation of neural networks that influence brain function throughout life. Previous studies have indicated that maternal separation (MS), a typical rodent model equivalent to early-life stress and, more specifically, to child abuse and/or neglect in humans, can modulate the hypothalamic–pituitary–adrenal (HPA) axis, affecting subsequent neuronal function and emotional behavior. However, the neural basis of the long-lasting effects of early-life stress on brain function has not been clarified. In the present review, we describe the alterations in the HPA-axis activity—focusing on serum corticosterone (CORT)—and in the end products of the HPA axis as well as on the CORT receptor in rodents. We then introduce the brain regions activated during various patterns of MS, including repeated MS and single exposure to MS at various stages before weaning, via an investigation of c-Fos expression, which is a biological marker of neuronal activity. Furthermore, we discuss the alterations in behavior and gene expression in the brains of adult mice exposed to MS. Finally, we ask whether MS repeats itself and whether intergenerational transmission of child abuse and neglect is possible.


2015 ◽  
Vol 30 (S2) ◽  
pp. S70-S70
Author(s):  
A. Dayer

The early developmental period is characterized by a high degree of plasticity and, consequently, is very sensitive to environmental factors, such as early life stressors (ELS). Exposure to ELS is known to increase risk to psychopathologies such as depression and anxiety disorders later in life . At a cellular level, alterations in the migration and integration of GABAergic interneurons (INs) in cortical circuits have emerged as a key processes involved in the vulnerability to psychiatric disorders . In humans and rodents, ELS interacts with genes regulating the serotonin system to increase risk to stress-related disorders . In addition, ELS is associated to a variety of epigenetic methylation changes in blood DNA from patients displaying a high loading of ELS . Here, we aimed to investigate the role of the ionotropic serotonin 3A receptor (5-HT3AR) at a genetic and epigenetic level in rodent and human models of early-life stress. We will first present data indicating that the 5-HT3AR is specifically expressed in a subset of cortical INs derived from the caudal ganglionic eminence (CGE) and controls early steps of cortical circuit assembly . Interestingly, the migration, transcriptional programs and positioning of 5-HT3AR expressing interneuron subtypes were found to be dysregulated in pathological models of early-life serotonin dysregulation. At a behavioral level, we found that ELS interacts with the 5-HTR3A to modulate social behaviors. Finally, we will present human data indicating that childhood adversity significantly impacts the methylation status of the promoter region of the human 5-HT3AR in an allele-specific manner. Taken together, this presentation will highlight the importance of the serotonin system in early life development and psychopathology with a special focus on the role of the 5-HT3AR in cortical interneuron development.


Sign in / Sign up

Export Citation Format

Share Document