LIN28A enhances regenerative capacity of human somatic tissue stem cells via metabolic and mitochondrial reprogramming

Author(s):  
Kelvin Pieknell ◽  
Yanuar Alan Sulistio ◽  
Noviana Wulansari ◽  
Wahyu Handoko Wibowo Darsono ◽  
Mi-Yoon Chang ◽  
...  
2011 ◽  
Vol 179 (2) ◽  
pp. 931-941 ◽  
Author(s):  
Xiaodong Mu ◽  
Guosheng Xiang ◽  
Christopher R. Rathbone ◽  
Haiying Pan ◽  
Ian H. Bellayr ◽  
...  

2013 ◽  
Vol 29 (10) ◽  
pp. S347
Author(s):  
M. Fitzpatrick ◽  
N. Latham ◽  
E.L. Tilokee ◽  
G.A. Wells ◽  
K. Lam ◽  
...  

2018 ◽  
Vol 15 (145) ◽  
pp. 20180388 ◽  
Author(s):  
Hannah Donnelly ◽  
Manuel Salmeron-Sanchez ◽  
Matthew J. Dalby

Mesenchymal stem cells, characterized by their ability to differentiate into skeletal tissues and self-renew, hold great promise for both regenerative medicine and novel therapeutic discovery. However, their regenerative capacity is retained only when in contact with their specialized microenvironment, termed the stem cell niche . Niches provide structural and functional cues that are both biochemical and biophysical, stem cells integrate this complex array of signals with intrinsic regulatory networks to meet physiological demands. Although, some of these regulatory mechanisms remain poorly understood or difficult to harness with traditional culture systems. Biomaterial strategies are being developed that aim to recapitulate stem cell niches, by engineering microenvironments with physiological-like niche properties that aim to elucidate stem cell-regulatory mechanisms, and to harness their regenerative capacity in vitro . In the future, engineered niches will prove important tools for both regenerative medicine and therapeutic discoveries.


2019 ◽  
Vol 41 (44) ◽  
pp. 4271-4282 ◽  
Author(s):  
Gian Paolo Fadini ◽  
Anurag Mehta ◽  
Devinder Singh Dhindsa ◽  
Benedetta Maria Bonora ◽  
Gopalkrishna Sreejit ◽  
...  

Abstract The cardiovascular and haematopoietic systems have fundamental inter-relationships during development, as well as in health and disease of the adult organism. Although haematopoietic stem cells (HSCs) emerge from a specialized haemogenic endothelium in the embryo, persistence of haemangioblasts in adulthood is debated. Rather, the vast majority of circulating stem cells (CSCs) is composed of bone marrow-derived HSCs and the downstream haematopoietic stem/progenitors (HSPCs). A fraction of these cells, known as endothelial progenitor cells (EPCs), has endothelial specification and vascular tropism. In general, the levels of HSCs, HSPCs, and EPCs are considered indicative of the endogenous regenerative capacity of the organism as a whole and, particularly, of the cardiovascular system. In the last two decades, the research on CSCs has focused on their physiologic role in tissue/organ homoeostasis, their potential application in cell therapies, and their use as clinical biomarkers. In this review, we provide background information on the biology of CSCs and discuss in detail the clinical implications of changing CSC levels in patients with cardiovascular risk factors or established cardiovascular disease. Of particular interest is the mounting evidence available in the literature on the close relationships between reduced levels of CSCs and adverse cardiovascular outcomes in different cohorts of patients. We also discuss potential mechanisms that explain this association. Beyond CSCs’ ability to participate in cardiovascular repair, levels of CSCs need to be interpreted in the context of the broader connections between haematopoiesis and cardiovascular function, including the role of clonal haematopoiesis and inflammatory myelopoiesis.


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e63528 ◽  
Author(s):  
Wendy Cousin ◽  
Michelle Liane Ho ◽  
Rajiv Desai ◽  
Andrea Tham ◽  
Robert Yuzen Chen ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1194-1194
Author(s):  
Ulrika Blank ◽  
Sarah Warsi ◽  
Silja Andradottir ◽  
Emma Rörby ◽  
Stefan Karlsson

Abstract Abstract 1194 The Bone Morphogenetic Proteins (BMPs), which belong to the TGF-beta superfamily of ligands, figure prominently during development and are involved in a wide variety of biological processes throughout life. BMP ligands signal via Type I and Type II receptors, both of which are required at the cell surface for propagation of the signal intra-cellularly. Upon receptor activation, both the Smad1/5/8 pathway and the Tak1 MAPK circuitry can be activated, ultimately leading to transcriptional regulation of target genes (Blank et al., Development 2009). Although the BMP pathway plays a role during embryonic development of hematopoiesis, its role in adult hematopoiesis has remained elusive. Previous studies of the Smad1/5/8 pathway have indicated that this pathway is not involved in regulation of adult hematopoietic stem cells (HSCs) in vivo. However, previously published findings demonstrate that the BMP Type II receptor (BmprII) is highly expressed in HSCs, suggesting that BMPs may still play a role in adult HSC regulation via Smad-independent mechanisms. To fully elucidate the role of BMP signaling in hematopoietic cells, we utilized a conditional knockout mouse model targeted to the BmprII gene by Vav-Cre-mediated deletion. Steady state hematopoiesis was essentially normal in BmprII knockouts, but the more primitive LSK population in the bone marrow (BM) was significantly reduced in knockouts compared to littermate controls at 16 weeks of age (0.107% of BM vs. 0.133%, p≤0.05, n=8–10). This reduction in primitive cells translated functionally into a reduced colony forming capacity in vitro (86 colonies/90 000 cells plated vs. 112/90 000 cells plated for controls, p≤0.05, n=8–10). Additionally, when hematopoietic cells were challenged in vivo by transplanting 0.2×10e6 knockout or littermate control whole BM cells in a competitive fashion with 0×10e6 wild type whole BM cells into lethally irradiated recipient mice, the regenerative capacity of BmprII knockout cells was significantly reduced both short term in peripheral blood, at 4 weeks post transplantation (36.5% vs. 48.6% donor-derived cells, p≤0.05, n=7 donors per genotype), and long term in the BM at 16 weeks post transplantation (40.9% vs. 63.4% donor-derived cells, p≤0.05, n=7 donors per genotype). Furthermore, we found a reduction in the myeloid compartment in the BM of BmprII donor recipients at 16 weeks post transplantation (40.3% vs. 64.5% Gr1+/Mac1+ cells of the donor population, p≤0.05, n=7 donors per genotype) coupled with an increase in B-lymphoid cells (46.7% vs. 26.3% B220+ cells of the donor population, p≤0.05, n=7 donors per genotype). To quantify more primitive cells, LSK SLAM FACS analysis was performed, revealing a significant decrease in the numbers of LSK cells (3508 cells vs. 12022 cells per femur, p≤0.05, n=7 donors per genotype), as well as LSK SLAM cells (542 vs. 3023 cells per femur, p≤0.05) derived from BmprII donors. Our studies indicate that the BMP circuitry plays a critical role in HSC regulation and that inactivation of this pathway at the receptor level results in a reduced regenerative capacity in vivo. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 219 (3) ◽  
pp. S136
Author(s):  
Dominik Duscher ◽  
Robert C. Rennert ◽  
Michael Januszyk ◽  
Zeshaan N. Maan ◽  
Alexander J. Whittam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document