scholarly journals Long non-coding RNA Rpph1 promotes inflammation and proliferation of mesangial cells in diabetic nephropathy via an interaction with Gal-3

2019 ◽  
Vol 10 (7) ◽  
Author(s):  
Panyang Zhang ◽  
Yan Sun ◽  
Rui Peng ◽  
Wenyun Chen ◽  
Xia Fu ◽  
...  
Author(s):  
Xun Fang ◽  
Jun Hu ◽  
Hongyan Zhou

Abstract Aims Our study aimed to investigate the role of long non-coding RNA ANRIL (lnc-ANRIL) knock-down in regulating cell activities, inflammation and downstream signaling pathways in mouse mesangial cellular diabetic nephropathy (DN) model. Methods The mouse mesangial cells (SV40-MES13 cells) were treated with high-glucose (HG) to construct cellular DN model. Lnc-ANRIL knock-down plasmid and control knock-down plasmid were transfected into HG-treated SV40-MES13 cells as Sh-ANRIL group and Sh-NC group respectively. Results Lnc-ANRIL expression was significantly higher in HG-treated SV40-MES13 cells compared with normal glucose-treated SV40-MES13 cells and osmotic control-treated SV40-MES13 cells. Lnc-ANRIL knock-down suppressed cell proliferation and promoted cell apoptosis in HG-treated SV40-MES13 cells. As for fibrosis, lnc-ANRIL knock-down reduced fibronectin and collagen I expressions in HG-treated SV40-MES13 cells. Besides, the expressions of supernatant tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-1β, IL-6, IL-8 and IL-18 were reduced in Sh-ANRIL group compared with Sh-NC group. Furthermore, Wnt3, β-catenin, p-MEK1 and p-ERK1 expressions were suppressed in Sh-ANRIL group compared with Sh-NC group, which suggested that lnc-ANRIL knock-down inhibited Wnt/β-catenin and MEK/ERK pathways in HG-treated SV40-MES13 cells. Conclusions Lnc-ANRIL knock-down suppresses mouse mesangial cell proliferation, fibrosis, inflammation, Wnt/β-catenin and MEK/ERK pathways in DN.


2018 ◽  
Vol 49 (6) ◽  
pp. 2174-2187 ◽  
Author(s):  
Suyu Wang ◽  
Xin Chen ◽  
Min Wang ◽  
Di Yao ◽  
Tianyu Chen ◽  
...  

Background/Aims: Our previous studies demonstrated that a novel long non-coding RNA, CYP4B1-PS1-001, was significantly downregulated in early diabetic nephropathy in vivo and in vitro, and CYP4B1-PS1-001 overexpression could inhibit the proliferation and fibrosis of mouse mesangial cells (MMCs). However, the underlying mechanism of the CYP4B1-PS1-001-mediated regulation of proliferation and fibrosis in diabetic nephropathy remains undetermined. Methods: RNA-protein pull-down assay, RNA-binding protein immunoprecipitation, and mass spectrometry were used to investigate CYP4B1-PS1-001 interacted with the upregulated protein nucleolin (NCL). siRNA method was applied to knockdown NCL in MMCs, the interaction between CYP4B1-PS1-001 and NCL were determined by Western blot analysis and RT-qPCR. The effect of CYP4B1-PS1-001 in the regulation of NCL was detected by cycloheximide (CHX) and ubiquitination assays. Results: We found that CYP4B1-PS1-001 interacts with NCL, and CYP4B1-PS1-001 inhibits the proliferation and fibrosis of MMCs depending on interaction with NCL. Furthermore, degradation of CYP4B1-PS1-001-associated NCL was mediated by a ubiquitin proteasome-dependent pathway. Conclusion: Our study provides evidence that CYP4B1-PS1-001 regulates the ubiquitination and degradation of NCL and thereby plays a critical role in the proliferation and fibrosis of MMCs, indicating that CYP4B1-PS1-001 and NCL may be promising prognostic biomarkers and molecular targets for the treatment of diabetic nephropathy.


RSC Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 5244-5244
Author(s):  
Laura Fisher

Retraction of ‘Long non-coding RNA TUG1 alleviates high glucose induced podocyte inflammation, fibrosis and apoptosis in diabetic nephropathy via targeting the miR-27a-3p/E2F3 axis’ by Yang Li et al., RSC Adv., 2019, 9, 37620–37629, DOI: 10.1039/C9RA06136C.


2020 ◽  
Vol 45 (4) ◽  
pp. 589-602 ◽  
Author(s):  
Jin-Feng Zhan ◽  
Hong-Wei Huang ◽  
Chong Huang ◽  
Li-Li Hu ◽  
Wen-Wei Xu

Introduction: Diabetic nephropathy (DN) is a serious complication of diabetes mellitus and is considered to be a sterile inflammatory disease. Increasing evidence suggest that pyroptosis and subsequent inflammatory response play a key role in the pathogenesis of DN. However, the underlying cellular and molecular mechanisms responsible for pyroptosis in DN are largely unknown. Methods: The rat models of DN were successfully established by single 65 mg/kg streptozotocin treatment. Glomerular mesangial cells were exposed to 30 mmol/L high glucose media for 48 h to mimic the DN environment in vitro. Gene and protein expressions were determined by quantitative real-time PCR and Western blot. Cell viability and pyroptosis were measured by MTT assay and flow cytometry analysis, respectively. The relationship between lncRNA NEAT1, miR-34c, and Nod-like receptor protein-3 (NLRP3) was confirmed by luciferase reporter assay. Results: We found that upregulation of NEAT1 was associated with the increase of pyroptosis in DN models. miR-34c, as a target gene of NEAT1, mediated the effect of NEAT1 on pyroptosis in DN by regulating the expression of NLRP3 as well as the expressions of caspase-1 and interleukin-1β. Either miR-34c inhibition or NLRP3 overexpression could reverse the accentuation of pyroptosis and inflammation by sh-NEAT1 transfection in the in vitro model of DN. Conclusions: Our findings suggested NEAT1 and its target gene miR-34c regulated cell pyroptosis via mediating NLRP3 in DN, providing new insights into understanding the molecular mechanisms of pyroptosis in the pathogenesis of DN.


2019 ◽  
Vol 39 (10) ◽  
Author(s):  
Rui Zhang ◽  
Xiao Han ◽  
Tao Huang ◽  
Xiuge Wang

Abstract Diabetic nephropathy (DN) is the common complications of diabetes mellitus, but the efficacy of available treatments for the prevention of DN is still unsatisfactory. In the present study, we aimed to explore the effect of Danggui buxue tang (DGT) on the proliferation of high glucose (HG)-induced mesangial cells and accumulation of extracellular matrix in mesangial cells. We found DGT up-regulated the expression of growth arrest specific transcript 5 (GAS5) and IκB kinase (IKK) dose-dependently in mouse mesangial cells (SV40 MES-13). We found DGT regulated the expression IKK and the activity of nuclear transcription factor-κB (NF-κB) via GAS5, and proved that long non-coding RNA (lncRNA) GAS5 was positively related with IKK. And we proved GAS5 regulated the expression of IKK and the activity of NF-κB. In addition, DGT inhibited the viability of MES-13 cells and extracellular matrix-related proteins (laminin (LN), fibronectin (FN) and collagen IV (Col IV)) via GAS5. Moreover, we proved GAS5 regulated the viability of SV40 MES-13 cells and extracellular matrix-related proteins through NF-κB pathway. DGT inhibited the proliferation of mesangial cells and accumulation of extracellular matrix via GAS5/NF-κB, therefore, DGT could be an effective treatment for the prevention of DN.


2017 ◽  
Vol 13 (2) ◽  
pp. 581-587 ◽  
Author(s):  
Yan Gao ◽  
Zhao-Yu Chen ◽  
Yan Wang ◽  
Yan Liu ◽  
Jian-Xia Ma ◽  
...  

Aging ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 3716-3730 ◽  
Author(s):  
Fangfang Zha ◽  
Xiaolu Qu ◽  
Bo Tang ◽  
Ji Li ◽  
Yakun Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document