scholarly journals Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes

2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Tae-Jun Park ◽  
Jei Hyoung Park ◽  
Ga Seul Lee ◽  
Ji-Yoon Lee ◽  
Ji Hye Shin ◽  
...  

Abstract Ischaemic heart disease (IHD) is the leading cause of death worldwide. Although myocardial cell death plays a significant role in myocardial infarction (MI), its underlying mechanism remains to be elucidated. To understand the progression of MI and identify potential therapeutic targets, we performed tandem mass tag (TMT)-based quantitative proteomic analysis using an MI mouse model. Gene ontology (GO) analysis and gene set enrichment analysis (GSEA) revealed that the glutathione metabolic pathway and reactive oxygen species (ROS) pathway were significantly downregulated during MI. In particular, glutathione peroxidase 4 (GPX4), which protects cells from ferroptosis (an iron-dependent programme of regulated necrosis), was downregulated in the early and middle stages of MI. RNA-seq and qRT-PCR analyses suggested that GPX4 downregulation occurred at the transcriptional level. Depletion or inhibition of GPX4 using specific siRNA or the chemical inhibitor RSL3, respectively, resulted in the accumulation of lipid peroxide, leading to cell death by ferroptosis in H9c2 cardiomyoblasts. Although neonatal rat ventricular myocytes (NRVMs) were less sensitive to GPX4 inhibition than H9c2 cells, NRVMs rapidly underwent ferroptosis in response to GPX4 inhibition under cysteine deprivation. Our study suggests that downregulation of GPX4 during MI contributes to ferroptotic cell death in cardiomyocytes upon metabolic stress such as cysteine deprivation.

Author(s):  
Hongli Zhou ◽  
Minyu Zhou ◽  
Yue Hu ◽  
Yanin Limpanon ◽  
Yubin Ma ◽  
...  

AbstractAngiostrongylus cantonensis (AC) can cause severe eosinophilic meningitis or encephalitis in non-permissive hosts accompanied by apoptosis and necroptosis of brain cells. However, the explicit underlying molecular basis of apoptosis and necroptosis upon AC infection has not yet been elucidated. To determine the specific pathways of apoptosis and necroptosis upon AC infection, gene set enrichment analysis (GSEA) and protein–protein interaction (PPI) analysis for gene expression microarray (accession number: GSE159486) of mouse brain infected by AC revealed that TNF-α likely played a central role in the apoptosis and necroptosis in the context of AC infection, which was further confirmed via an in vivo rescue assay after treating with TNF-α inhibitor. The signalling axes involved in apoptosis and necroptosis were investigated via immunoprecipitation and immunoblotting. Immunofluorescence was used to identify the specific cells that underwent apoptosis or necroptosis. The results showed that TNF-α induced apoptosis of astrocytes through the RIP1/FADD/Caspase-8 axis and induced necroptosis of neurons by the RIP3/MLKL signalling pathway. In addition, in vitro assay revealed that TNF-α secretion by microglia increased upon LSA stimulation and caused necroptosis of neurons. The present study provided the first evidence that TNF-α was secreted by microglia stimulated by AC infection, which caused cell death via parallel pathways of astrocyte apoptosis (mediated by the RIP1/FADD/caspase-8 axis) and neuron necroptosis (driven by the RIP3/MLKL complex). Our research comprehensively elucidated the mechanism of cell death after AC infection and provided new insight into targeting TNF-α signalling as a therapeutic strategy for CNS injury.


Author(s):  
Weiqiang Huang ◽  
Longshan Zhang ◽  
Mi Yang ◽  
Xixi Wu ◽  
Xiaoqing Wang ◽  
...  

Abstract Background Irradiation has emerged as a valid tool for nasopharyngeal carcinoma (NPC) in situ treatment; however, NPC derived from tissues treated with irradiation is a main cause cancer-related death. The purpose of this study is to uncover the underlying mechanism regarding tumor growth after irradiation and provided potential therapeutic strategy. Methods Fibroblasts were extracted from fresh NPC tissue and normal nasopharyngeal mucosa. Immunohistochemistry was conducted to measure the expression of α-SMA and FAP. Cytokines were detected by protein array chip and identified by real-time PCR. CCK-8 assay was used to detect cell proliferation. Radiation-resistant (IRR) 5-8F cell line was established and colony assay was performed to evaluate tumor cell growth after irradiation. Signaling pathways were acquired via gene set enrichment analysis (GSEA). Comet assay and γ-H2AX foci assay were used to measure DNA damage level. Protein expression was detected by western blot assay. In vivo experiment was performed subcutaneously. Results We found that radiation-resistant NPC tissues were constantly infiltrated with a greater number of cancer-associated fibroblasts (CAFs) compared to radiosensitive NPC tissues. Further research revealed that CAFs induced the formation of radioresistance and promoted NPC cell survival following irradiation via the IL-8/NF-κB pathway to reduce irradiation-induced DNA damage. Treatment with Tranilast, a CAF inhibitor, restricted the survival of CAF-induced NPC cells and attenuated the of radioresistance properties. Conclusions Together, these data demonstrate that CAFs can promote the survival of irradiated NPC cells via the NF-κB pathway and induce radioresistance that can be interrupted by Tranilast, suggesting the potential value of Tranilast in sensitizing NPC cells to irradiation.


2021 ◽  
Vol 12 (1) ◽  
pp. 009-019
Author(s):  
Ying Yang ◽  
Jin Wang ◽  
Shihai Xu ◽  
Wen Lv ◽  
Fei Shi ◽  
...  

Abstract Background In cancer, kappa B-interacting protein (IKBIP) has rarely been reported. This study aimed at investigating its expression pattern and biological function in brain glioma at the transcriptional level. Methods We selected 301 glioma patients with microarray data from CGGA database and 697 glioma patients with RNAseq data from TCGA database. Transcriptional data and clinical data of 998 samples were analyzed. Statistical analysis and figure generating were performed with R language. Results We found that IKBIP expression showed positive correlation with WHO grade of glioma. IKBIP was increased in isocitrate dehydrogenase (IDH) wild type and mesenchymal molecular subtype of glioma. Gene ontology analysis demonstrated that IKBIP was profoundly associated with extracellular matrix organization, cell–substrate adhesion and response to wounding in both pan-glioma and glioblastoma. Subsequent gene set enrichment analysis revealed that IKBIP was particularly correlated with epithelial-to-mesenchymal transition (EMT). To further elucidate the relationship between IKBIP and EMT, we performed gene set variation analysis to screen the EMT-related signaling pathways and found that IKBIP expression was significantly associated with PI3K/AKT, hypoxia and TGF-β pathway. Moreover, IKBIP expression was found to be synergistic with key biomarkers of EMT, especially with N-cadherin, vimentin, snail, slug and TWIST1. Finally, higher IKBIP indicated significantly shorter survival for glioma patients. Conclusions IKBIP was associated with more aggressive phenotypes of gliomas. Furthermore, IKBIP was significantly involved in EMT and could serve as an independent prognosticator in glioma.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mi Rong Lee ◽  
Jong Cheol Kim ◽  
So Eun Park ◽  
Se Jin Lee ◽  
Woo Jin Kim ◽  
...  

The longhorned tick, Haemaphysalis longicornis (Acari: Ixodidae), is a hard tick and a vector for severe fever with thrombocytopenia syndrome (SFTS) virus. The number of patients infected with SFTS is rapidly increasing. Recently, the invertebrate pathogen Metarhizium anisopliae JEF-290 was reported to be useful to control the tick as an alternative to chemical acaricides, which are not easily applicable in human living areas where the tick is widely spread. In this study, we analyzed how the tick and the fungal pathogen interact at the transcriptional level. Field-collected tick nymphs were treated with JEF-290 conidia at 1 × 108 conidia/ml. In the early stage of infection with 2.5% mortality, the infected ticks were subjected to RNA sequencing, and non-infected ticks and fungal masses served as controls. Fungus and tick genes were mostly up-regulated at the early stage of infection. In the gene set enrichment analysis of the infecting fungus, catabolic processes that included lipids, phospholipids, and detoxification processes, the response to oxidative stress, and toxic substances were significantly up-regulated. In this fungal up-regulation, various lipase, antioxidant enzyme, and hydrolase genes were highly transcribed. The gene set enrichment analysis of the infected tick showed that many peptide synthesis processes including translation, peptide metabolism, ribonucleotide metabolism, and energy production processes that included ATP generation and ADP metabolism were significantly up-regulated. Structurally, mitochondria and ribosome subunit genes in ticks were highly transcribed to upregulate these processes. Together these results indicate that JEF-290 initiates process that infects the tick while the tick actively defends against the fungal attack. This work provides background to improve our understanding of the early stage of fungal infection in longhorned tick.


ESC CardioMed ◽  
2018 ◽  
pp. 1230-1232
Author(s):  
Pascal Vranckx

Myocardial infarction is the irreversible myocardial cell death (necrosis) secondary to a prolonged lack of oxygen supply (ischaemia) caused by a complete occlusion of a major coronary in the absence of forward or collateral flow. Within the perfusion area of the occluded artery, flow deprivation and myocardial ischaemia are usually most severe subendocardially (apart from the innermost cell layers nourished from the cavity) and, at least in dogs, cell death progresses from the subendocardium to the subepicardium in a time-dependent fashion.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e16521-e16521
Author(s):  
Lekun Fang ◽  
Ziqing Yang ◽  
Shaomin Zou ◽  
Yunling Xie

e16521 Background: Actin-like 6A (ACTL6A), an actin-like protein, is a member of ATP-dependent SWI/SNF like BAF chromatin remodeling complexes. Previous reports revealed that ACTL6A was involved in varying cellular processes including chromatin remodeling, transcriptional regulation, vesicular transport, and nuclear migration. Nevertheless, its role and mechanism in Gastric Cancer (GC), the second leading causes of cancer-related death worldwide, has not been reported. To explore it, we found that ACTL6A inhibits ferroptosis of GC cells via regulating glutathione (GSH) metabolism. Ferroptosis is a regulated form of cell death driven by accumulation of lipid-based reactive oxygen species (ROS). Methods: GC cell line snu638 was used for studies. Firstly, silencing ACTL6A in snu638 with shRNA, cell proliferation was measured by counting cell confluence in incucyte. Overlapping the Gene Set Enrichment Analysis (GSEA) results of RNA-sequencing and two databases, we found that ACTL6A is positively correlated with GSH metabolism, which can be validated by real time-PCR. Next, cells were treated with ferrostatin-1 (fer-1), a ferroptosis inhibitor, to check if ACTL6A can inhibit ferroptosis. Finally, 13C-glucose and 13C-glutamine were used for tracing the metabolites in snu638, which were measured by LC-MS system. Results: Suppression of ACTL6A significantly inhibits GC cell growth. In our RNA-sequence results, ACTL6A is positively correlated with GSH metabolism, which is also enrich in two GC databases. ROS level was increased after ACTL6A knockdown. Since ROS plays an important role in ferroptosis, we found that fer-1 can rescue cell death caused by suppression of ACTL6A. When tracing with 13C-glucose, total GSH and 13C incorporation from 13C-glucose in the m+2 and m+4 isotopomer of GSH is reduced when ACTL6A is depleted, while total contribution of U-13C glucose to serine, glycine and glutamate have no significant changes. When tracing with 13C-glutamine, m+5 fractional contributions of 13C-glutamine to γ-glutamyl-cysteine and GSH are decreased when silencing ACTL6A. These results reveal that ACTL6A promotes de novo GSH synthesis. Conclusions: ACTL6A acts as an oncogene in GC via regulating GSH metabolism, and ferroptosis is inhibited for increasing GSH by ACTL6A, which highlights the importance of ACTL6A in GC metabolism and tumorigenesis. Therefore, ACTL6A could be a potential diagnosis marker or target gene of chemotherapy for GC.


2021 ◽  
Vol 8 ◽  
Author(s):  
Siyuan Zhao ◽  
Rongyuan Cao ◽  
Shuhua Zhang ◽  
Yan Kang

Obesity has been shown as a risk factor to increase the incidence of myocardial infarction (MI). However, obesity has also been linked to the decreased mortality of acute MI with unknown mechanisms. Here, we firstly used large-scale literature data mining to identify obesity downstream targets and MI upstream regulators with polarity, based on which an obesity-MI regulatory network was constructed. Then, a gene set enrichment analysis was conducted to explore the functional profile of the genes involved in the obesity-MI regulatory networks. After that, a mega-analysis using MI RNA expression datasets was conducted to test the expression of obesity-specific genes in MI patients, followed by a shortest-path analysis to explore any potential gene-MI association. Our results suggested that obesity could inhibit 11 MI promoters, including NPPB, NPPA, IRS1, SMAD3, MIR155, ADRB1, AVP, MAPK14, MC3R, ROCK1, and COL3A1, which were mainly involved in blood pressure-related pathways. Our study suggested that obesity could influence MI progression by driving multiple genes associated with blood pressure regulation. Moreover, PTH could be a novel obesity driven gene associated with the pathogenesis of MI, which needs further validation.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Zhenlin Wang ◽  
Chenting Ying ◽  
Anke Zhang ◽  
Houshi Xu ◽  
Yang Jiang ◽  
...  

Abstract The hematopoietic cell kinase (HCK), a member of the Src family protein-tyrosine kinases (SFKs), is primarily expressed in cells of the myeloid and B lymphocyte lineages. Nevertheless, the roles of HCK in glioblastoma (GBM) remain to be examined. Thus, we aimed to investigate the effects of HCK on GBM development both in vitro and in vivo, as well as the underlying mechanism. The present study found that HCK was highly expressed in both tumor tissues from patients with GBM and cancer cell lines. HCK enhanced cell viability, proliferation, and migration, and induced cell apoptosis in vitro. Tumor xenografts results also demonstrated that HCK knockdown significantly inhibited tumor growth. Interestingly, gene set enrichment analysis (GSEA) showed HCK was closed associated with epithelial mesenchymal transition (EMT) and TGFβ signaling in GBM. In addition, we also found that HCK accentuates TGFβ-induced EMT, suggesting silencing HCK inhibited EMT through the inactivation of Smad signaling pathway. In conclusion, our findings indicated that HCK is involved in GBM progression via mediating EMT process, and may be served as a promising therapeutic target for GBM.


2020 ◽  
Author(s):  
Huang Weiqiang ◽  
Zhang Longshan ◽  
Yang Mi ◽  
Wu Xixix ◽  
Wang Xiaoqing ◽  
...  

Abstract Background: Irradiation has emerged as a valid tool for nasopharyngeal carcinoma (NPC) in situ treatment; however, NPC derived from tissues treated with irradiation is a main cause cancer-related death. The purpose of this study is to uncover the underlying mechanism regarding tumor growth after irradiation and provided potential therapeutic strategy. Methods: Fibroblasts were extracted from fresh NPC tissue and normal nasopharyngeal mucosa. Immunohistochemistry was conducted to measure the expression of α-SMA. Cytokines were detected by protein array chip and identified by real-time PCR. CCK-8 assay was used to detect cell proliferation. Radiation-resistant (IRR) 5-8F cell line was established and colony assay was performed to evaluate tumor cell growth after irradiation. Signaling pathways were acquired via gene set enrichment analysis (GSEA). Comet assay was used to measure DNA damage level. Protein expression was detected by western blot assay. Results: We found that radiation-resistant NPC tissues were constantly infiltrated with a greater number of cancer-associated fibroblasts (CAFs) compared to radiosensitive NPC tissues. Further research revealed that CAFs induced the formation of radioresistance and promoted NPC cell survival following irradiation via the IL-8/NF-κB pathway to reduce irradiation-induced DNA damage. Treatment with Tranilast, a CAF inhibitor, restricted the survival of CAF-induced NPC cells and attenuated the of radioresistance properties. Conclusions: Together, these data demonstrate that CAFs can promote the survival of irradiated NPC cells via the NF-κB pathway and induce radioresistance that can be interrupted by Tranilast, suggesting the potential value of Tranilast in sensitizing NPC cells to irradiation.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Erna Guo ◽  
Haotang Wei ◽  
Xiwen Liao ◽  
Liuyu Wu ◽  
Xiaoyun Zeng

Abstract Background Colon adenocarcinoma (COAD) is the most common form of colon cancer. The glutathione S-transferase Mu (GSTM) gene belongs to the GST gene family, which functions in cell metabolism and detoxification. The relationship between GSTM and COAD and the underlying mechanism remain unknown. Methods Data extracted from The Cancer Genome Atlas included mRNA expression and clinical information such as gender, age, and tumor stage. Prognostic values of GSTM genes were identified by survival analysis. Function and mechanism of prognostic GSTM genes were identified by gene set enrichment analysis. A nomogram was used to predict the contribution of risk factors to the outcome of COAD patients. Results Low expression of GSTM1 and GSTM2 was related to favorable OS (adjusted P = 0.006, adjusted HR = 0.559, 95% CI = 0.367–0.849 and adjusted P = 0.002, adjusted HR = 0.519, 95% CI = 0.342–0.790, respectively) after adjusting for tumor stage. Enrichment analysis also showed that genes involved were related to cell cycle, metabolism, and detoxification processes, as well as the Wnt signaling and NF-κB pathways. Conclusions In conclusion, low expression of GSTM1 and GSTM2 were significantly associated with favorable prognosis in COAD. These two genes may serve as potential biomarkers of COAD prognosis.


Sign in / Sign up

Export Citation Format

Share Document