scholarly journals Targeting the autophagy promoted antitumor effect of T-DM1 on HER2-positive gastric cancer

2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Jinghui Zhang ◽  
Jiajun Fan ◽  
Xian Zeng ◽  
Mingming Nie ◽  
Wei Chen ◽  
...  

AbstractTrastuzumab emtansine (T-DM1), an antibody-drug conjugate consisted of the HER2-targeted monoclonal antibody trastuzumab and the tubulin inhibitor emtansine, has shown potent therapeutic value in HER2-positive breast cancer (BC). However, a clinical trial indicated that T-DM1 exerts a limited effect on HER2-positive gastric cancer (GC), but the underlying mechanism is inconclusive. Our research attempted to reveal the probable mechanism and role of autophagy in T-DM1-treated HER2-positive GC. In this study, our results showed that T-DM1 induced apoptosis and exhibited potent therapeutic efficacy in HER2-positive GC cells. In addition, autophagosomes were observed by transmission electron microscopy. Autophagy was markedly activated and exhibited the three characterized gradations of autophagic flux, consisting of the formation of autophagosomes, the fusion of autophagosomes with lysosomes, and the deterioration of autophagosomes in autolysosomes. More importantly, autophagic inhibition by the suppressors 3-methyladenine (3-MA) and LY294002 significantly potentiated cytotoxicity and apoptosis in HER2-positive GC cells in vitro, while the combined use of LY294002 and T-DM1 elicited potent anti-GC efficacy in vivo. In mechanistic experiments, immunoblot analysis indicated the downregulated levels of Akt, mTOR, and P70S6K and confocal microscopy analysis clearly showed that autophagic inhibition promoted the fusion of T-DM1 molecules with lysosomes in GC cells. In conclusion, our research demonstrated that T-DM1 induced apoptosis as well as cytoprotective autophagy, and autophagic inhibition could potentiate the antitumor effect of T-DM1 on HER2-positive GC. Furthermore, autophagic inhibition might increase the fusion of T-DM1 with lysosomes, which might accelerate the release of the cytotoxic molecule emtansine from the T-DM1 conjugate. These findings highlight a promising therapeutic strategy that combines T-DM1 with an autophagy inhibitor to treat HER-positive GC more efficiently.

2020 ◽  
Vol 12 ◽  
pp. 175883592093742
Author(s):  
Wen Peng ◽  
Huaqing Zhang ◽  
Shisheng Tan ◽  
Yan Li ◽  
Yang Zhou ◽  
...  

Background: Lysine-specific histone demethylase 1 (LSD1) is a potential target of cancer therapy. In the present study, we aimed to investigate the combined antitumor activity of a novel LSD1 inhibitor (ZY0511) with 5-fluorouracil (5-FU) and elucidate the underlying mechanism in colorectal cancer (CRC). Methods: We evaluated LSD1 expression in CRC tissues from patients who received 5-FU treatment. The synergistic antitumor effect of 5-FU with ZY0511 against human CRC cells was detected both in vitro and in vivo. The underlying mechanism was explored based on mRNA sequencing (mRNA-seq) technology. Results: Overexpression of LSD1 was observed in human CRC tissues, and correlated with CRC development and 5-FU resistance. ZY0511, a novel LSD1 inhibitor, effectively inhibited CRC cells proliferation, both in vitro and in vivo. Notably, the combination of ZY0511 and 5-FU synergistically reduced CRC cells viability and migration in vitro. It also suppressed Wnt/β-catenin signaling and DNA synthesis pathways, which finally induced apoptosis of CRC cells. In addition, the combination of ZY0511 with 5-FU significantly reduced CRC xenograft tumor growth, along with lung and liver metastases in vivo. Conclusions: Our findings identify LSD1 as a potential marker for 5-FU resistance in CRC. ZY0511 is a promising candidate for CRC therapy as it potentiates 5-FU anticancer effects, thereby providing a new combinatorial strategy for treating CRC.


2020 ◽  
Vol 10 ◽  
Author(s):  
Ling Wang ◽  
Xiaoke Chai ◽  
Run Wan ◽  
Hong Zhang ◽  
Cong Zhou ◽  
...  

Disulfiram (DSF) is a well-known drug for alcohol abuse. In recent decades, DSF has been demonstrated to exhibit anti-tumor activity; DSF chelated with copper shows enhanced anti-tumor effect. Our goal was to explore the effect of DSF/Cu complex on the growth and metastasis of gastric cancer (GC) in vitro and in vivo. DSF/Cu complex suppressed the proliferation, migration of MKN-45 and BGC-823 GC cells. Furthermore, DSF/Cu treatment reduced the tumor volume in GC mouse models with a tumor suppression rate of 48.24%. Additionally, DSF/Cu induced apoptosis in vitro in MKN-45 and BGC-823 GC cells in a dose- and time-dependent manner as well as in vivo in the xenograft tumor mouse model. Furthermore, DSF/Cu induced autophagy and autophagic flux in MKN-45 and BGC-823 cells, increased the expression of autophagy-related Beclin-1 and LC3 proteins in vivo. Additionally, DSF/Cu suppressed aerobic glycolysis and oxidative phosphorylation by reducing oxygen consumption rate and extracellular acidification rate, respectively, in MKN-45 and BGC-823 cells. Treatment with DSF/Cu induced oxidative stress and DNA damage response by elevating the reactive oxygen species levels; increasing the expression of P53, P21, and γ-H2AX proteins; and inhibiting Wnt/β-catenin signaling in vitro and in vivo. Thus, DSF/Cu suppressed the growth and metastasis of GC cells via modulating the stress response and Wnt/β-catenin signaling. Hence, DSF may be used as a potential therapeutic agent for the treatment of GC.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Meng-Yao Sun ◽  
Jian Sun ◽  
Jie Tao ◽  
Yu-Xia Yuan ◽  
Zhen-Hua Ni ◽  
...  

Gastric cancer (GC) is the third leading cause of cancer-related death. Chemotherapy resistance remains the major reason for GC treatment failure and poor overall survival of patients. Our previous studies have proved that Zuo Jin Wan (ZJW), a traditional Chinese medicine (TCM) formula, could significantly enhance the sensitivity of cisplatin (DDP)-resistant gastric cancer cells to DDP by inducing apoptosis via mitochondrial translocation of cofilin-1. However, the underlying mechanism remains poorly understood. This study aimed to evaluate the effects of ROCK/PTEN/PI3K on ZJW-induced apoptosis in vitro and in vivo. We found that ZJW could significantly activate the ROCK/PTEN pathway, inhibit PI3K/Akt, and promote the apoptosis of SGC-7901/DDP cells. Inhibition of ROCK obviously attenuated ZJW-induced apoptosis as well as cofilin-1 mitochondrial translocation, while inhibition of PI3K had the opposite effects. In vivo, combination treatment of DDP and ZJW (2000 mg/kg) significantly reduced tumor growth compared with DDP alone. Moreover, the combined administration of ZJW and DDP increased the expression of cleaved ROCK and p-PTEN while it decreased p-PI3K and p-cofilin-1, which was consistent with our in vitro results. These findings indicated that ZJW could effectively inhibit DDP resistance in GC by regulating ROCK/PTEN/PI3K signaling and provide a promising treatment strategy for gastric cancer.


2022 ◽  
Vol 12 ◽  
Author(s):  
Zuhua Chen ◽  
Jiajia Yuan ◽  
Yingying Xu ◽  
Cheng Zhang ◽  
Zhongwu Li ◽  
...  

RC48-ADC is a novel humanized antibody specific for human epidermal growth factor receptor 2 (HER2)in conjugation with a microtubule inhibitor via a cleavable linker. This study was to evaluate the antitumor activity and mechanism of RC48-ADC in gastric cancer (GC) and explore the population that may benefit from RC48-ADC treatment. Four human GC cell lines and nine patient-derived xenograft (PDX) models were exploited to evaluate the antitumor effect of RC48-ADC or trastuzumab treatment in vitro and in vivo. The expression and phosphorylation of HER2 were assessed by immunohistochemistry (IHC) staining. Critical molecules of downstream PI3K/AKT and cell cycle and apoptosis signaling pathways were detected and quantified by immunoblotting. Combined with preliminary results of preclinical research, three patients with IHC3+, IHC2+/FISH+, and IHC2+/FISH- of HER2 were enrolled to verify the efficacy of RC48-ADC treatment in advanced GC. In vitro, RC48-ADC had superior antiproliferative effects in a dose-dependent manner on GC cells, especially on HER2-positive cells. In vivo, RC48-ADC exceeded trastuzumab in GC PDX models with HER2 expression, even in models with moderate to low expression of HER2. Further exploration of mechanism showed that RC48-ADC exerted the antitumor effect by inhibiting phosphorylation of HER2, inducing G2/M phase arrest and cell apoptosis in HER2-expressed PDX models. In clinical practice, RC48-ADC had satisfactory efficacy in HER2-positive and HER2 moderately expressed GC patients and demonstrated promising efficacy in HER2-positive patients who have progressed after anti-HER2 therapy. In conclusion, RC48-ADC exerted promising antitumor activity in HER2-positive as well as score of 2+ in IHC and ISH-negative AGC patients after progression of systematic treatment.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Yoonjung Kwon ◽  
Yeojin Bang ◽  
Soung-Hee Moon ◽  
Aeri Kim ◽  
Hyun Jin Choi

Abstract Amitriptyline is a tricyclic antidepressant commonly prescribed for major depressive disorders, as well as depressive symptoms associated with various neurological disorders. A possible correlation between the use of tricyclic antidepressants and the occurrence of Parkinson’s disease has been reported, but its underlying mechanism remains unknown. The accumulation of misfolded protein aggregates has been suggested to cause cellular toxicity and has been implicated in the common pathogenesis of neurodegenerative diseases. Here, we examined the effect of amitriptyline on protein clearance and its relevant mechanisms in neuronal cells. Amitriptyline exacerbated the accumulation of abnormal aggregates in both in vitro neuronal cells and in vivo mice brain by interfering with the (1) formation of aggresome-like aggregates and (2) autophagy-mediated clearance of aggregates. Amitriptyline upregulated LC3B-II, but LC3B-II levels did not increase further in the presence of NH4Cl, which suggests that amitriptyline inhibited autophagic flux rather than autophagy induction. Amitriptyline interfered with the fusion of autophagosome and lysosome through the activation of PI3K/Akt/mTOR pathway and Beclin 1 acetylation, and regulated lysosome positioning by increasing the interaction between proteins Arl8, SKIP, and kinesin. To the best of our knowledge, we are the first to demonstrate that amitriptyline interferes with autophagic flux by regulating the autophagosome maturation during autophagy in neuronal cells. The present study could provide neurobiological clue for the possible correlation between the amitriptyline use and the risk of developing neurodegenerative diseases.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Huijuan Tang ◽  
Wenjie Huang ◽  
Qiang Yang ◽  
Ying Lin ◽  
Yihui Chen ◽  
...  

Abstract Background The exploration of new therapeutic agents targeting 5-Fu resistance may open a new opportunity to gastric cancer treatment. The objective is to establish a 5-Fu resistant gastric cancer cell line and observe the effect of Jianpi Yangwei decoction (JPYW) on its apoptosis and drug-resistance related proteins. Methods MTT assay was used to measure the effect of JPYW on the BGC823 cells proliferation, and the apoptosis was observed by flow cytometry and Hoechst fluorescence staining. The BGC823 xenograft tumor nude mice models were established, the apoptosis was detected by Tunel method. BGC-823/5-Fu was established by repeated low-dose 5-Fu shocks, the drug resistance index and proliferation were detected by the MTT assay; MDR1 mRNA was detected by real-time RT-PCR; Western blot was used to detect the ratio of p-AKT to AKT; The BGC823/5-Fu xenograft tumor nude mice models were established and apoptosis was measured. The expressions of MRP1, MDR1, ABCG2, AKT, p-AKT, caspase-3 and bcl-2 were detected by immunohistochemistry and the AKT mRNA expression was detected by real-time RT-PCR. Results JPYW induced apoptosis in BGC823 cells; Drug-resistant cell line BGC-823/5-Fu was sucessfully established; JPYW induced apoptosis of BGC823/5-Fu cells, down-regulated the expression of MRP1, MDR1 and ABCG2 in vitro and in vivo, and further decreased MDR1 expression when combined with pathway inhibitor LY294002 (P < 0.05); JPYW down-regulated the ratio of p-AKT to AKT in vitro in a dose-dependent manner, the same as after the combination with LY294002 (P < 0.05). Conclusion JPYW can induce apoptosis of BGC823 and BGC823/5-Fu cells, and down-regulate the expression of MDR1, MRP1, ABCG2 in vitro and in vivo. Its in vitro effect is related to the PI3K/AKT signaling pathway.


2015 ◽  
Vol 20 (4) ◽  
Author(s):  
Eunyoung Hong ◽  
Eunil Lee ◽  
Joonhee Kim ◽  
Daeho Kwon ◽  
Yongchul Lim

AbstractThe high frequency of intrinsic resistance to TNF-related apoptosisinducing ligand (TRAIL) in tumor cell lines has necessitated the development of strategies to sensitize tumors to TRAIL-induced apoptosis. We previously showed that elevated pressure applied as a mechanical stressor enhanced TRAIL-mediated apoptosis in human lung carcinoma cells in vitro and in vivo. This study focused on the effect of elevated pressure on the sensitization of TRAIL-resistant cells and the underlying mechanism. We observed elevated pressure-induced sensitization to TRAIL-mediated apoptosis in Hep3B cells, accompanied by the activation of several caspases and the mitochondrial signaling pathway. Interestingly, the enhanced apoptosis induced by elevated pressure was correlated with suppression of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) phosphorylation and CREB without any change to other MAPKs. Phosphorylation of Bcl-2-associated death promoter (BAD) also decreased, leading to inhibition of the mitochondrial pathway. To confirm whether the activation of pERK1/2 plays a key role in the TRAIL-sensitizing effect of elevated pressure, Hep3B cells were pre-treated with the ERK1/2-specific inhibitor PD98059 instead of elevated pressure. Co-treatment with PD98059 and TRAIL augmented TRAIL-induced apoptosis and decreased BAD phosphorylation. The inhibition of ERK1/2 activation by elevated pressure and PD98059 also reduced BH3 interacting-domain death agonist (BID), thereby amplifying apoptotic stress at the mitochondrial level. Our results suggest that elevated pressure enhances TRAIL-induced apoptosis of Hep3B cells via specific suppression of ERK1/2 activation among MAPKs.


2016 ◽  
Vol 38 (5) ◽  
pp. 1939-1951 ◽  
Author(s):  
Lei Li ◽  
Lian-Mei Zhao ◽  
Su-li Dai ◽  
Wen-Xuan Cui ◽  
Hui-Lai Lv ◽  
...  

Background/Aims: Periplocin is extracted from the traditional herbal medicine cortex periplocae, which has been reported to suppress the growth of cancer cells. However, little is known about its effect on gastric cancer cells. Methods: Gastric cancer cells were treated with periplocin, and cell viability was assessed using MTS assay. Flow cytometry and TUNEL staining were performed to evaluate apoptosis, and protein expression was examined by western blotting. Microarray analysis was used to screen for changes in related genes. Results: We found that periplocin had an inhibitory effect on gastric cancer cell viability in a dose-dependent manner. Periplocin inhibited cell viability via the ERK1/2-EGR1 pathway to induce apoptosis. Periplocin also inhibited the growth of tumor xenografts and induced apoptosis in vivo. Conclusion: Our results show that periplocin inhibits the proliferation of gastric cancer cells and induces apoptosis in vitro and in vivo, indicating its potential to be used as an antitumor drug.


2016 ◽  
Vol 0 (0) ◽  
Author(s):  
Min Yang ◽  
Nan Jiang ◽  
Qi-wei Cao ◽  
Qing Sun

Abstract Gastric cancer is the most common digestive malignant tumor worldwild. EDD1 was reported to be frequently amplified in several tumors and played an important role in the tumorigenesis process. However, the biological role and potential mechanism of EDD1 in gastric cancer remains poorly understood. In this study, we are aim to investigate the effect of EDD1 on gastric cancer progression and to explore the underlying mechanism. The results showed the significant up-regulation of EDD1 in -gastric cancer cell tissues and lines. The expression level of EDD1 was also positively associated with advanced clinical stages and predicted poor overall patient survival and poor disease-free patient survival. Besides, EDD1 knockdown markedly inhibited cell viability, colony formation, and suppressed tumor growth. Opposite results were obtained in gastric cancer cells with EDD1 overexpression. EDD1 knockdown was also found to induce gastric cancer cells apoptosis. Further investigation indicated that the oncogenic role of EDD1 in regulating gastric cancer cells growth and apoptosis was related to its PABC domain and directly through targeting miR-22, which was significantly down-regulated in gastric cancer tissues. Totally, our study suggests that EDD1 plays an oncogenic role in gastric cancer and may be a potential therapeutic target for gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document