scholarly journals Circular RNA AFF4 modulates osteogenic differentiation in BM-MSCs by activating SMAD1/5 pathway through miR-135a-5p/FNDC5/Irisin axis

2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Chao Liu ◽  
An-Song Liu ◽  
Da Zhong ◽  
Cheng-Gong Wang ◽  
Mi Yu ◽  
...  

AbstractBone marrow-derived mesenchymal stem cells (BM-MSCs), the common progenitor cells of adipocytes and osteoblasts, have been recognized as the key mediator during bone formation. Herein, our study aim to investigate molecular mechanisms underlying circular RNA (circRNA) AFF4 (circ_AFF4)-regulated BM-MSCs osteogenesis. BM-MSCs were characterized by FACS, ARS, and ALP staining. Expression patterns of circ_AFF4, miR-135a-5p, FNDC5/Irisin, SMAD1/5, and osteogenesis markers, including ALP, BMP4, RUNX2, Spp1, and Colla1 were detected by qRT-PCR, western blot, or immunofluorescence staining, respectively. Interactions between circ_AFF4 and miR-135a-5p, FNDC5, and miR-135a-5p were analyzed using web tools including TargetScan, miRanda, and miRDB, and further confirmed by luciferase reporter assay and RNA pull-down. Complex formation between Irisin and Integrin αV was verified by Co-immunoprecipitation. To further verify the functional role of circ_AFF4 in vivo during bone formation, we conducted animal experiments harboring circ_AFF4 knockdown, and born samples were evaluated by immunohistochemistry, hematoxylin and eosin, and Masson staining. Circ_AFF4 was upregulated upon osteogenic differentiation induction in BM-MSCs, and miR-135a-5p expression declined as differentiation proceeds. Circ_AFF4 knockdown significantly inhibited osteogenesis potential in BM-MSCs. Circ_AFF4 stimulated FNDC5/Irisin expression through complementary binding to its downstream target molecule miR-135a-5p. Irisin formed an intermolecular complex with Integrin αV and activated the SMAD1/5 pathway during osteogenic differentiation. Our work revealed that circ_AFF4, acting as a sponge of miR-135a-5p, triggers the promotion of FNDC5/Irisin via activating the SMAD1/5 pathway to induce osteogenic differentiation in BM-MSCs. These findings gained a deeper insight into the circRNA-miRNA regulatory system in the bone marrow microenvironment and may improve our understanding of bone formation-related diseases at physiological and pathological levels.

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yicai Zhang ◽  
Yi Sun ◽  
Jinlong Liu ◽  
Yu Han ◽  
Jinglong Yan

The molecular mechanisms how bone marrow-derived mesenchymal stem cells (BMSCs) differentiate into osteoblast need to be investigated. MicroRNAs (miRNAs) contribute to the osteogenic differentiation of BMSCs. However, the effect of miR-346-5p on osteogenic differentiation of BMSCs is not clear. This study is aimed at elucidating the underlying mechanism by which miR-346-5p regulates osteogenic differentiation of human BMSCs. Results of alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining indicated that upregulation of miR-346-5p suppressed osteogenic differentiation of BMSCs, whereas downregulation of miR-346-5p enhanced this process. The protein levels of the osteoblastic markers Osterix and Runt-related transcription factor 2 (Runx2) were decreased in cells treated with miR-346-5p mimic at day 7 and day 14 after being differentiated. By contrast, downregulation of miR-346-5p elevated the protein levels of Osterix and Runx2. Moreover, a dual-luciferase reporter assay revealed that Transmembrane Protein 9 (TMEM9) was a target of miR-346-5p. In addition, the Western Blot results demonstrated that the TMEM9 protein level was significantly reduced by the miR-346-5p mimic whereas downregulation of miR-346-5p improved the protein level of TMEM9. These results together demonstrated that miR-346-5p served a key role in BMSC osteogenic differentiation of through targeting TMEM9, which may provide a novel target for clinical treatments of bone injury.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8909
Author(s):  
Lina Li ◽  
Jie Fang ◽  
Yi Liu ◽  
Li Xiao

Osteogenic differentiation is an important role in dental implantation. Long no coding RNAs (lncRNAs) are a novel class of noncoding RNAs that have significant effects in a variety of diseases. However, the function and mechanisms of LOC100506178 in osteogenic differentiation and migration of bone morphogenetic protein 2 (BMP2)-induced osteogenic differentiation of human bone marrow mesenchymalstem cells (hBMSCs) remain largely unclear. BMP2 was used to induce osteogenic differentiation of hBMSCs. Quantitative real time PCR (qRT-PCR) was used to examine the expression of LOC100506178, miR-214-5p, Runt-related transcription factor 2 (RUNX2), Osterix (Osx), and Alkaline Phosphatase (ALP) in BMP2-induced osteogenic differentiation of hBMSCs. The function of LOC100506178 and miR-214-5p was explored in vitro using Alizarin Red S Staining, ALP activity, as well as in vivo ectopic bone formation. Luciferase reporter assay was performed to assess the association between LOC100506178 and miR-214-5p, as well as miR-214-5p and BMP2. The miR-214-5p sponging potential of LOC100506178 was evaluated by RNA immunoprecipitation. In the present study, the expression of LOC100506178 was found to be increased in BMP2-induced osteogenic differentiation of hBMSCs, accompanied with decreased miR-214-5p expression and increased RUNX2, Osx and ALP expression. LOC100506178 significantly induced, while miR-214-5p suppressed the BMP2-induced osteogenic differentiation of hBMSCs. Mechanistically, LOC100506178 was directly bound to miR-214-5p and miR-214-5p targeted the 3′-untranslated region of BMP2 to negatively regulate its expression. In conclusion, our data indicate a novel molecular pathway LOC100506178/miR-214-5p/BMP2 in relation to hBMSCs differentiation into osteoblasts, which may facilitate bone anabolism.


2020 ◽  
Author(s):  
Longwei Hu ◽  
Yang Wang ◽  
Hongya Pan ◽  
Kathreena Kadir ◽  
Jin Wen ◽  
...  

Abstract Objectives:This study aims to investigate whether ARC could promote survival and enhance osteogenic differentiation of bone marrow derived mesenchymal stem cells (BMSCs).Material and methods:Lentivirus transfection method was used to establish ARC overexpressed BMSCs. CCK-8 method was used to detect cell proliferation. The BD Pharmingen™ APC Annexin V Apoptosis Detection kit was used to detect cell apoptosis. The osteogenic capacity was investigated by OCN immunofluoresence staining, ALP, ARS assay and RT-PCR analysis. Cells were seeded into CPC scaffolds, then inserted into subcutaneous of nude mice and the defect area of rat’s calvarium. Histological analysis was conducted to evaluate in vivo cell apoptosis and new bone formation ability of ARC overexpressed BMSCs. RNA-seq method was used to detect the possible mechanism of the effect of ARC on BMSCs. Results:ARC can promote BMSCs proliferation and inhibit its cell apoptosis. ARC can enhance BMSCs osteogenic differentiation in vitro. In vivo study revealed ARC can inhibit BMSCs’ apoptosis and increase its new bone formation ability. ARC regulates BMSCs mainly by activating Fgf-2/PI3K/Akt pathway.Conclusions: The present study suggested that ARC is a powerful agent to promote bone regeneration of BMSCs and provides a promising method for bone tissue engineering.


2020 ◽  
Author(s):  
Gang Lei ◽  
Yanqiu Wang ◽  
Yan Yu ◽  
Zehan Li ◽  
Jiamin Lu ◽  
...  

Abstract Background Oral and maxillofacial bone loss is highly prevalent among populations and nowadays increased attention has been focused on dentin derivatives as desirable graft materials for bone regeneration. In this study, dentin-derived inorganic minerals (DIM) were fabricated with a high-temperature calcination technique and the effects of DIM on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMMSCs) and the bone formation were elucidated.Methods The effects of DIM on BMMSCs proliferation, apoptosis capacity were evaluated by CCK-8, flow cytometry and EdU assays. Alkaline phosphatase (ALP) activity detection, ALP staining, alizarin red staining and osteogenic markers expression analysis were performed to investigate the influence of DIM on the osteogenic differentiation of BMMSCs, as well as the relevant signal mechanisms. The model of critical-sized defects in calvarium of rats was constructed for exploring the in vivo efficiency of DIM on bone regeneration.Results Cell viability assays indicated that DIM had no cytotoxicity. BMMSCs cultured with DIM presented a higher level of osteogenic differentiation ability than those in the control group. The activation in ERK and p38 signals was detected in DIM-treated BMMSCs, and both pathways and osteogenic process were suppressed while using ERK inhibitor U0126 and p38 inhibitor SB203580, respectively. Furthermore, the animal experiments revealed that DIM could dramatically enhance new bone formation compared to the control group.Conclusion All these results demonstrated that DIM could promote BMMSCs osteogenic differentiation via triggering ERK and p38 MAPK signaling pathways and be a novel predictable material for facilitating bone formation.


2021 ◽  
Author(s):  
Longwei Hu ◽  
Yang Wang ◽  
Hongya Pan ◽  
Kathreena Kadir ◽  
Jin Wen ◽  
...  

Abstract Objectives: This study aims to investigate whether Apoptosis repressor with caspase recruitment domain (ARC) could promote survival and enhance osteogenic differentiation of bone marrow -derived mesenchymal stem cells (BMSCs). Materials and methods: The lentivirus transfection method was used to establish ARC -overexpressing BMSCs. The CCK-8 method was used to detect cell proliferation. The BD Pharmingen™ APC Annexin V Apoptosis Detection kit was used to detect cell apoptosis. The osteogenic capacity was investigated by OCN immunofluorescence staining, ALP analysis, ARS assays and RT-PCR analysis. Cells were seeded into calcium phosphate cement (CPC) scaffolds and then inserted subcutaneously into nude mice and the defect area of the rat calvarium. Histological analysis was conducted to evaluate the in vivo cell apoptosis and new bone formation of the ARC -overexpressing BMSCs. RNA-seq was used to detect the possible mechanism of the effect of ARC on BMSCs. Results: ARC promoted BMSC proliferation and inhibited cell apoptosis. ARC enhanced BMSC osteogenic differentiation in vitro. An in vivo study revealed that ARC can inhibit BMSC apoptosis and increase new bone formation. ARC regulates BMSCs mainly by activating the Fgf-2/PI3K/Akt pathway. Conclusions: The present study suggests that A RC is a powerful agent for promoting bone regeneration of BMSCs and provides a promising method for bone tissue engineering.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Gang Lei ◽  
Yanqiu Wang ◽  
Yan Yu ◽  
Zehan Li ◽  
Jiamin Lu ◽  
...  

Background. Oral and maxillofacial bone loss is highly prevalent among populations, and nowadays, increased attention has been focused on dentin derivatives serving as desirable graft materials for bone regeneration. In this study, dentin-derived inorganic mineral (DIM) was fabricated with a high-temperature calcination technique and the effects of DIM on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMMSCs) and the bone formation were elucidated. Methods. The effects of DIM on BMMSC proliferation and apoptosis capacity were evaluated by CCK-8, flow cytometry, and EdU assays. Alkaline phosphatase (ALP) activity detection, ALP staining, alizarin red staining, and osteogenic marker expression analysis were performed to investigate the influence of DIM on the osteogenic differentiation of BMMSCs, as well as the relevant signal mechanisms. The model of critical-sized defects in the calvarium of rats was constructed for exploring the in vivo efficiency of DIM on bone regeneration. Results. Cell viability assays indicated that DIM had no cytotoxicity. BMMSCs cultured with DIM presented a higher level of osteogenic differentiation ability than those in the control group. The activation in ERK and p38 signals was detected in DIM-treated BMMSCs, and both pathways and osteogenic process were suppressed while using ERK inhibitor U0126 and p38 inhibitor SB203580, respectively. Furthermore, the animal experiments revealed that DIM could dramatically enhance new bone formation compared to the control group. Conclusion. DIM could promote BMMSC osteogenic differentiation via triggering the ERK and p38 MAPK signaling pathways and might be a novel predictable material for facilitating bone formation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Longwei Hu ◽  
Yang Wang ◽  
Hongya Pan ◽  
Kathreena Kadir ◽  
Jin Wen ◽  
...  

Abstract Objectives This study aims to investigate whether apoptosis repressor with caspase recruitment domain (ARC) could promote survival and enhance osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Materials and methods The lentivirus transfection method was used to establish ARC-overexpressing BMSCs. The CCK-8 method was used to detect cell proliferation. The BD Pharmingen™ APC Annexin V Apoptosis Detection kit was used to detect cell apoptosis. The osteogenic capacity was investigated by OCN immunofluorescence staining, ALP analysis, ARS assays, and RT-PCR analysis. Cells were seeded into calcium phosphate cement (CPC) scaffolds and then inserted subcutaneously into nude mice and the defect area of the rat calvarium. Histological analysis was conducted to evaluate the in vivo cell apoptosis and new bone formation of the ARC-overexpressing BMSCs. RNA-seq was used to detect the possible mechanism of the effect of ARC on BMSCs. Results ARC promoted BMSC proliferation and inhibited cell apoptosis. ARC enhanced BMSC osteogenic differentiation in vitro. An in vivo study revealed that ARC can inhibit BMSC apoptosis and increase new bone formation. ARC regulates BMSCs mainly by activating the Fgf-2/PI3K/Akt pathway. Conclusions The present study suggests that ARC is a powerful agent for promoting bone regeneration of BMSCs and provides a promising method for bone tissue engineering.


2021 ◽  
Author(s):  
Jiahui Guo ◽  
Tingting Liu ◽  
Zhongyan Shan ◽  
Weiping Teng

Abstract Background: Circular RNA (circRNA) has been reported to play multiple roles in a variety of cancers. However, the role of circRNA in papillary thyroid carcinoma (PTC) remains mostly unknown. Methods: The expression, function and potential molecular mechanisms of hsa_circ_0000839 in PTC in vitro were evaluated by quantitative RT-PCR, western blot, flow cytometry, CCK8, Edu, RNA-sequencing, luciferase reporter, and RNA immunoprecipitation assay. The function of hsa_circ_0000839 in PTC in vivo was evaluated by xenograft tumors assay.Results: Hsa_circ_0000839 was significantly downregulated in PTC tissues and plasma from patients with PTC, and its downregulation was correlated with larger tumor size in patients with PTC. The role of hsa_circ_0000839 in the proliferation of PTC cell lines was evaluated in both vitro and in vivo. Mechanistically, hsa_circ_0000839 regulated the level of CDC27 via sponging miR-149-5p in PTC. Conclusions: Hsa_circ_0000839 might act as a tumor suppressor of PTC through the hsa_circ_0000839/miR-149-5p/CDC27 axis. Hsa_circ_0000839 could serve as a potential biomarker and therapeutic target for patients with PTC.


2021 ◽  
Author(s):  
Longwei Hu ◽  
Yang Wang ◽  
Hongya Pan ◽  
Kathreena Kadir ◽  
Jin Wen ◽  
...  

Abstract Objectives: This study aims to investigate whether Apoptosis repressor with caspase recruitment domain (ARC) could promote survival and enhance osteogenic differentiation of bone marrow -derived mesenchymal stem cells (BMSCs). Materials and methods: The lentivirus transfection method was used to establish ARC -overexpressing BMSCs. The CCK-8 method was used to detect cell proliferation. The BD Pharmingen™ APC Annexin V Apoptosis Detection kit was used to detect cell apoptosis. The osteogenic capacity was investigated by OCN immunofluorescence staining, ALP analysis, ARS assays and RT-PCR analysis. Cells were seeded into calcium phosphate cement (CPC) scaffolds and then inserted subcutaneously into nude mice and the defect area of the rat calvarium. Histological analysis was conducted to evaluate the in vivo cell apoptosis and new bone formation of the ARC -overexpressing BMSCs. RNA-seq was used to detect the possible mechanism of the effect of ARC on BMSCs. Results: ARC promoted BMSC proliferation and inhibited cell apoptosis. ARC enhanced BMSC osteogenic differentiation in vitro. An in vivo study revealed that ARC can inhibit BMSC apoptosis and increase new bone formation. ARC regulates BMSCs mainly by activating the Fgf-2/PI3K/Akt pathway. Conclusions: The present study suggests that A RC is a powerful agent for promoting bone regeneration of BMSCs and provides a promising method for bone tissue engineering.


Author(s):  
Hang Li ◽  
Jian Qu ◽  
Haihong Zhu ◽  
Jiaojiao Wang ◽  
Hao He ◽  
...  

Osteoporosis is a chronic age-related disease. During aging, bone marrow-derived mesenchymal stem cells (BMSCs) display increased adipogenic, along with decreased osteogenic, differentiation capacity. The aim of the present study was to investigate the effect of calcitonin gene-related peptide (CGRP) on the osteogenic and adipogenic differentiation potential of BMSC-derived osteoblasts. Here, we found that the level of CGRP was markedly lower in bone marrow supernatant from aged mice compared with that in young mice. In vitro experiments indicated that CGRP promoted the osteogenic differentiation of BMSCs while inhibiting their adipogenic differentiation. Compared with vehicle-treated controls, aged mice treated with CGRP showed a substantial promotion of bone formation and a reduction in fat accumulation in the bone marrow. Similarly, we found that CGRP could significantly enhance bone formation in ovariectomized (OVX) mice in vivo. Together, our results suggested that CGRP may be a key regulator of the age-related switch between osteogenesis and adipogenesis in BMSCs and may represent a potential therapeutic strategy for the treatment of age-related bone loss.


Sign in / Sign up

Export Citation Format

Share Document