scholarly journals Exosomal hsa_circ_0004658 derived from RBPJ overexpressed-macrophages inhibits hepatocellular carcinoma progression via miR-499b-5p/JAM3

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Lei Zhang ◽  
Jing Zhang ◽  
Pengfei Li ◽  
Ting Li ◽  
Zhiqin Zhou ◽  
...  

AbstractMacrophage-derived exosomes (Mφ-Exo) have multidimensional involvement in tumor initiation, progression, and metastasis, but their regulation in hepatocellular carcinoma (HCC) is not fully understood. RBPJ has been implicated in macrophage activation and plasticity. In this study we assess the role of exosomes derived from RBPJ-overexpressed macrophages (RBPJ+/+ Mφ-Exo) in HCC. The circular RNA (circRNA) profiles in RBPJ+/+ Mφ-Exo and THP-1-like macrophages (WT Mφ)-Exo was evaluated using circRNA microarray. CCK-8, Transwell, and flow cytometry analyses were used to evaluate the function of Mφ-Exo-circRNA on HCC cells. Luciferase reporter assays, RNA immunoprecipitation, and Pearson’s correlation analysis were used to confirm interactions. A nude mouse xenograft model was used to further analyze the functional significance of Mφ-Exo-cirRNA in vivo. Our results shown that hsa_circ_0004658 is upregulated in RBPJ+/+ Mφ-Exo compared to WT Mφ-Exo. RBPJ+/+ Mφ-Exo and hsa_circ_0004658 inhibits proliferation and promotes apoptosis in HCC cells, whereas hsa_circ_0004658 knockdown stimulated cell proliferation and migration but restrained apoptosis in vitro and promotes tumor growth in vivo. The effects of RBPJ+/+ Mφ-Exo on HCC cells can be reversed by the hsa_circ_0004658 knockdown. Mechanistic investigations revealed that hsa_circ_0004658 acts as a ceRNA of miR-499b-5p, resulting in the de-repression of JAM3. These results indicate that exosome circRNAs secreted from RBPJ+/+ Mφ inhibits tumor progression through the hsa_circ_0004658/miR-499b-5p/JAM3 pathway and hsa_circ_0004658 may be a diagnostic biomarker and potential target for HCC therapy.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Cheng Zeng ◽  
Shaojun Ye ◽  
Yu Chen ◽  
Qu Zhang ◽  
Yan Luo ◽  
...  

Hepatocellular carcinoma (HCC) is the most prevalent type of hepatic carcinoma. Long noncoding RNAs (lncRNAs) are considered crucial regulators of gene expression; however, their functions in HCC are not well understood. Thus, the present study is aimed at elucidating the functions of the lncRNA HOXA-AS3 in HCC. The functions of the HOXA-AS3/miR-455-5p/programmed death-ligand 1 (PD-L1) axis were investigated in vitro via qRT-PCR and dual-luciferase reporter assays. The effect of HOXA-AS3 expression on tumor growth and metastasis was assessed using a mouse xenograft model. High HOXA-AS3 expression was observed in the HCC cell lines. Furthermore, overexpression of HOXA-AS3 in HCC cells enhanced proliferation, migration, and invasion, regulated the cell cycle, and retarded apoptosis. We also identified an miR-455-5p binding site in HOXA-AS3. By sponging miR-455-5p, HOXA-AS3 increased the expression of PD-L1. Additionally, both the inhibition of PD-L1 and overexpression of miR-455-5p reversed the effects on cell proliferation and invasion triggered by the overexpression of HOXA-AS3. In conclusion, HOXA-AS3 modulated the functions of HCC cells through the miR-455-5p/PD-L1 axis. Therefore, HOXA-AS3 may be a novel therapeutic target for HCC.


Author(s):  
Gege Shu ◽  
Huizhao Su ◽  
Zhiqian Wang ◽  
Shihui Lai ◽  
Yan Wang ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) has an extremely poor prognosis due to the development of chemoresistance, coupled with inherently increased stemness properties. Long non-coding RNAs (LncRNAs) are key regulators for tumor cell stemness and chemosensitivity. Currently the relevance between LINC00680 and tumor progression was still largely unknown, with only one study showing its significance in glioblastoma. The study herein was aimed at identifying the role of LINC00680 in the regulation HCC stemness and chemosensitivity. Methods QRT-PCR was used to detect the expression of LINC00680, miR-568 and AKT3 in tissue specimen and cell lines. Gain- or loss-of function assays were applied to access the function of LINC00680 in HCC cells, including cell proliferation and stemness properties. HCC stemness and chemosensitivity were determined by sphere formation, cell viability and colony formation. Luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays were performed to examine the interaction between LINC00680 and miR-568 as well as that between miR-568 and AKT3. A nude mouse xenograft model was established for the in vivo study. Results We found that LINC00680 was remarkably upregulated in HCC tissues. Patients with high level of LINC00680 had poorer prognosis. LINC00680 overexpression significantly enhanced HCC cell stemness and decreased in vitro and in vivo chemosensitivity to 5-fluorouracil (5-Fu), whereas LINC00680 knockdown led to opposite results. Mechanism study revealed that LINC00680 regulated HCC stemness and chemosensitivity through sponging miR-568, thereby expediting the expression of AKT3, which further activated its downstream signaling molecules, including mTOR, elF4EBP1, and p70S6K. Conclusion LINC00680 promotes HCC stemness properties and decreases chemosensitivity through sponging miR-568 to activate AKT3, suggesting that LINC00680 might be a potentially important HCC diagnosis marker and therapeutic target.


2021 ◽  
Author(s):  
Junping Pan ◽  
Yingzhe Hu ◽  
Chenlu Yuan ◽  
Yafu Wu ◽  
Xinhua Zhu

Abstract Background Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high mortality and poor prognosis. Long non-coding RNAs NEAT1 (lncRNA NEAT1) have been found to play an important role in HCC progression. However, the role and potential molecular mechanism of lncRNA NEAT1 in HCC remain largely unclear. Methods The role of lncRNA NEAT1 both in vitro and in vivo was investigated, with RNA pull-down and RNA immunoprecipitation (RIP) assays being performed to determine the interaction among NEAT1 and FOXO3 and PKM2. In addition, HCC cells were treated with exosomes derived from NEAT1-overexpressing HCC cells, and then cell proliferation, migration and invasion were assessed using in vitro assays. Results In this study, overexpression of NEAT1 promoted the proliferation, migration and invasion of HCC cells, whereas NEAT1 knockdown exhibited the opposite effects. Mechanistically, NEAT1 was found to recruit transcription factor FOXO3 to PKM2 promoter region and upregulate PKM2 expression. Meanwhile, overexpression of NEAT1 increased tumor growth and metastasis in a mouse xenograft model of HCC in vivo via upregulation of PKM2. Furthermore, overexpression of NEAT1 promoted exosome release from HCC cells. Exosomes secreted from NEAT1-overexpressing HCC cells promoted the proliferation, migration and invasion of HCC cells. Conclusion We found that NEAT1 could promote HCC progression via upregulation of PKM2 and exosome-mediated transfer. These data indicated that NEAT1 may be a therapeutic target in HCC.


Author(s):  
Guangli Sun ◽  
Zheng Li ◽  
Zhongyuan He ◽  
Weizhi Wang ◽  
Sen Wang ◽  
...  

Abstract Background Cisplatin (CDDP) is the first-line chemotherapy for gastric cancer (GC). The poor prognosis of GC patients is partially due to the development of CDDP resistance. Circular RNAs (circRNAs) are a subclass of noncoding RNAs that function as microRNA (miRNA) sponges. The role of circRNAs in CDDP resistance in GC has not been evaluated. Methods RNA sequencing was used to identify the differentially expressed circRNAs between CDDP-resistant and CDDP-sensitive GC cells. qRT-PCR was used to detect the expression of circMCTP2 in GC tissues. The effects of circMCTP2 on CDDP resistance were investigated in vitro and in vivo. Pull-down assays and luciferase reporter assays were performed to confirm the interactions among circMCTP2, miR-99a-5p, and myotubularin-related protein 3 (MTMR3). The protein expression levels of MTMR3 were detected by western blotting. Autophagy was evaluated by confocal microscopy and transmission electron microscopy (TEM). Results CircMCTP2 was downregulated in CDDP-resistant GC cells and tissues compared to CDDP-sensitive GC cells and tissues. A high level of circMCTP2 was found to be a favorable factor for the prognosis of patients with GC. CircMCTP2 inhibited proliferation while promoting apoptosis of CDDP-resistant GC cells in response to CDDP treatment. CircMCTP2 was also found to reduce autophagy in CDDP-resistant GC cells. MiR-99a-5p was verified to be sponged by circMCTP2. Inhibition of miR-99a-5p could sensitize GC cells to CDDP. MTMR3 was confirmed to be a direct target of miR-99a-5p. Knockdown of MTMR3 reversed the effects of circMCTP2 on the proliferation, apoptosis and autophagy of CDDP-resistant GC cells. CircMCTP2 was also confirmed to inhibit CDDP resistance in vivo in a nude mouse xenograft model. Conclusions CircMCTP2 sensitizes GC to CDDP through the upregulation of MTMR3 by sponging miR-99a-5p. Overexpression of CircMCTP2 could be a new therapeutic strategy for counteracting CDDP resistance in GC.


Author(s):  
Jun-Jie Hu ◽  
Cui Zhou ◽  
Xin Luo ◽  
Sheng-Zheng Luo ◽  
Zheng-Hong Li ◽  
...  

Abstract Background Increasing evidence has demonstrated that long noncoding RNAs (lncRNAs) have regulatory functions in hepatocellular carcinoma (HCC). The link between lincSCRG1 and HCC remains unclear. Methods To explore the lincSCRG1 regulation axis, bioinformatics, RIP and luciferase reporter assay were performed. The expressions of lincSCRG1-miR26a-SKP2 were detected in HCC tissues and cell lines through qPCR and western blot. The functions of HCC cells were investigated through in vitro assays (MTT, colony formation, transwell and flow cytometry) and the inner effect of lincSCRG1-miR26a in vivo was evaluated by xenografts and liver metatstatic nude mice models. Results LincSCRG1 was found to be strongly elevated in human HCC tissues and cell lines. MiR26a and S phase kinase-related protein 2 (SKP2) were predicted as the target miRNA for lincSCRG1 and the target gene for miR26a with direct binding sites, respectively. LincSCRG1 was verified as a competing endogenous RNA (ceRNA) via negative regulation of miR26a and derepression of SKP2 in HCC cells. Both overexpression of lincSCRG1 (ov-lincSCRG1) and inhibition of miR26a (in-miR26a) obviously stimulated cellular viability, colony formation, migration and proliferation of S phase cells and also significantly increased the protein levels of cyclinD1, CDK4, MMP2/3/9, Vimentin, and N-cadherin or inhibited the protein level of E-cadherin of HCC cells, while knockdown of lincSCRG1 (sh-lincSCRG1) and upregulation of miR26a (mi-miR26a) had the opposite effects on HCC cells. Cotransfection of in-miR26a or overexpression of SKP2 (ov-SKP2) with sh-lincSCRG1 could rescue the anticancer functions of sh-lincSCRG1, including suppressing proliferation and migration of HCC cells. Additionally, sh-lincSCRG1 could effectively inhibit the growth of subcutaneous xenograft tumours and lung metastasis, while the anticancer effect of sh-lincSCRG1 could be reversed by cotransfection of in-miR26a. Conclusions LincSCRG1 acts as a ceRNA of miR26a to restrict its ability to derepress SKP2, thereby inducing the proliferation and migration of HCC cells in vitro and in vivo. Depletion of lincSCRG1 could be used as a potential therapeutic approach in HCC.


2020 ◽  
Author(s):  
Gege Shu ◽  
Huizhao Su ◽  
Zhiqian Wang ◽  
Shihui Lai ◽  
Yan Wang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) has an extremely poor prognosis due to the development of chemoresistance, coupled with inherently increased stemness properties. Long non-coding RNAs (LncRNAs) are key regulators for tumor cell stemness and chemosensitivity. Currently the relevance between LINC00680 and tumor progression was still largely unknown, with only one study showing its significance in glioblastoma. The study herein was aimed at identifying the role of LINC00680 in the regulation HCC stemness and chemosensitivity. Methods: QRT-PCR was used to detect the expression of LINC00680, miR-568 and AKT3 in tissue specimen and cell lines. Gain- or loss-of function assays were applied to access the function of LINC00680 in HCC cells, including cell proliferation and stemness properties. HCC stemness and chemosensitivity were determined by sphere formation, cell viability and colony formation. Luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull down assays were performed to examine the interaction between LINC00680 and miR-568 as well as that between miR-568 and AKT3. A nude mouse xenograft model was established for the in vivo study.Results: We found that LINC00680 was remarkably upregulated both in HCC tissue and cell lines. Patients with high level of LINC00680 had poorer prognosis. LINC00680 overexpression significantly enhanced HCC cell stemness and decreased in vitro and in vivo chemosensitivity to 5-fluorouracil (5-Fu), whereas LINC00680 knockdown led to opposite results. Mechanism study revealed that LINC00680 regulated HCC stemness and chemosensitivity through sponging miR-568, thereby expediting the expression of AKT3, which further activated its downstream signaling molecules, including mTOR, elF4EBP1, and p70S6K.Conclusion: LINC00680 promotes HCC stemness properties and decreases chemosensitivity through sponging miR-568 to activate AKT3, suggesting that LINC00680 might be a potentially important HCC diagnosis marker and therapeutic target.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yanhui Yu ◽  
Lijuan Bian ◽  
Renfei Liu ◽  
Yitong Wang ◽  
Xia Xiao

Abstract Background Circular RNA hsa_circ_0061395 (circ_0061395) has been reported to accelerate the advancement of hepatocellular carcinoma (HCC). However, the regulatory mechanism by which circ_0061395 modulates the progression of HCC is unclear. Methods The morphology and size of exosomes were analyzed by transmission electron microscope (TEM) and nanoparticle-tracking analysis (NTA). Protein levels were detected by western blotting. Expression levels of circ_0061395, microRNA (miR)-877-5p, and phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) mRNA were assessed by quantitative real time polymerase chain reaction (qRT-PCR). The proliferation, invasion, migration, cell cycle progression, and apoptosis were analyzed by cell counting kit-8 (CCK-8), plate clone, transwell, or flow cytometry assays. The targeting relationship between circ_0061395 or PIK3R3 and miR-877-5p was verified using the dual-luciferase reporter and/or RNA immunoprecipitation (RIP) assays. Xenograft assay was performed to confirm the biological function of circ_0061395 in HCC. Results Circ_0061395 was upregulated in HCC tissues, serum, cells, and serum-derived exosomes. Circ_0061395 silencing decreased tumor growth in vivo, and induced cell cycle arrest, apoptosis, repressed proliferation, invasion, and migration of HCC cells in vitro. MiR-877-5p was downregulated while PIK3R3 was upregulated in HCC. Circ_0061395 regulated PIK3R3 expression via competitively binding to miR-877-5p. MiR-877-5p inhibitor overturned circ_0061395 knockdown-mediated influence on malignant behaviors of HCC cells. PIK3R3 overexpression reversed the suppressive influence of miR-877-5p mimic on malignant behaviors of HCC cells. Conclusion Circ_0061395 facilitated HCC progression via regulating the miR-877-5p/PIK3R3 axis, providing a new perspective on the advancement of HCC.


Author(s):  
Boqiang Liu ◽  
Yuanshi Tian ◽  
Mingyu Chen ◽  
Hao Shen ◽  
Jiafeng Xia ◽  
...  

BackgroundThe physiological regulatory functions of circRNAs have become a topic of intensive research in recent years. Increasing evidence supports a significant role of circRNAs during cancer initiation and progression, including hepatocellular carcinoma (HCC).Materials and MethodsA bioinformatics analysis from three independent Gene Expression Omnibus (GEO) databases was performed to profile and screen the dysregulated circRNAs in HCC. RT-qPCR was used to examine the expression level of circUBAP2 in HCC and adjacent non-tumor tissues. Then, proliferation assays (CCK8 and colony formation) and migration assays (transwell and wound healing) were performed to examine effect of circUBAP2 in vitro. Immunoprecipitation, RNA pulldown, FISH, and dual-luciferase reporter assay was conducted to explore the circUBAP2-related mechanism for regulating HCC progression. Moreover, a mouse xenograft model and a mouse lung metastasis model confirmed the effect of circUBAP2 in vivo.ResultsIn this study, we found a novel circRNA: circUBAP2, which was identified by bioinformatics analysis. Among 91 HCC patients, circUBAP2 was significantly upregulated in HCC tissues, and negatively correlated with aggressive clinical characteristics and prognosis. Functional assays demonstrated that circUBAP2 promoted cell proliferation, colony formation, migration, and invasion in vitro. Moreover, circUBAP2 enhanced tumor growth and pulmonary metastasis in vivo. Mechanistically, circUBAP2 acts as a competing endogenous RNA (ceRNA) for miR-194-3p, a tumor suppressor in HCC. We confirmed that MMP9 was direct target for miR-194-3p, which was regulated by circUBAP2.ConclusionCircUBAP2 plays a significant role in promoting HCC via the miR-194-3p/MMP9 pathway and could serve as a promising prognostic biomarker and novel therapeutic target for HCC patients.


2021 ◽  
Author(s):  
Gege Shu ◽  
Huizhao Su ◽  
Zhiqian Wang ◽  
Shihui Lai ◽  
Yan Wang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) has an extremely poor prognosis due to the development of chemoresistance, coupled with inherently increased stemness properties. Long non-coding RNAs (LncRNAs) are key regulators for tumor cell stemness and chemosensitivity. Currently the relevance between LINC00680 and tumor progression was still largely unknown, with only one study showing its significance in glioblastoma. The study herein was aimed at identifying the role of LINC00680 in the regulation HCC stemness and chemosensitivity. Methods: QRT-PCR was used to detect the expression of LINC00680, miR-568 and AKT3 in tissue specimen and cell lines. Gain- or loss-of function assays were applied to access the function of LINC00680 in HCC cells, including cell proliferation and stemness properties. HCC stemness and chemosensitivity were determined by sphere formation, cell viability and colony formation. Luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays were performed to examine the interaction between LINC00680 and miR-568 as well as that between miR-568 and AKT3. A nude mouse xenograft model was established for the in vivo study.Results: We found that LINC00680 was remarkably upregulated in HCC tissues. Patients with high level of LINC00680 had poorer prognosis. LINC00680 overexpression significantly enhanced HCC cell stemness and decreased in vitro and in vivo chemosensitivity to 5-fluorouracil (5-Fu), whereas LINC00680 knockdown led to opposite results. Mechanism study revealed that LINC00680 regulated HCC stemness and chemosensitivity through sponging miR-568, thereby expediting the expression of AKT3, which further activated its downstream signaling molecules, including mTOR, elF4EBP1, and p70S6K.Conclusion: LINC00680 promotes HCC stemness properties and decreases chemosensitivity through sponging miR-568 to activate AKT3, suggesting that LINC00680 might be a potentially important HCC diagnosis marker and therapeutic target.


Author(s):  
Wenjin Liang ◽  
Yan Wang ◽  
Qinyu Zhang ◽  
Min Gao ◽  
Haizhou Zhou ◽  
...  

Background: Hepatocellular carcinoma (HCC) cells exhibit the stemness property, which makes the patient with HCC prone to tumor recurrence and metastasis. Despite the prominent regulatory role of long non-coding RNAs (lncRNAs) in tumor stemness, the roles and molecular mechanisms of LINC00106 in HCC are poorly understood.Methods: LINC00106, let7f and periostin expression levels in tissue specimens and cell lines were assessed through qRT-PCR and immunohistochemistry (IHC). Various in vivo and in vitro assays, namely sphere/colony formation, proportion of side population cells (SP%), invasion, migration, western blot, and murine xenograft model were employed for assessing the stemness and metastatic properties of HCC cells. Luciferase reporter assays, RNA-seq, RNA pull-down, RNA immunoprecipitation (RIP) were conducted to clarificate the target gene and analyze the underlying mechanisms.Results: LINC00106 was prominently upregulated in tissues and cell lines of HCC. Patients having a high LINC00106 level exhibited a poor outcome. Under in vivo and in vitro conditions, the stemness and metastatic properties of HCC cells were augmented by LINC00106. Additionally, LINC00106 was found to sponge let7f to upregulate periostin, which lead to the activation of periostin-associated PI3K-AKT signaling pathway. Moreover, m6A methylation was found to cause LINC00106 upregulation while maintaining LINC00106 RNA transcript stability.Conclusion: m6A methylation triggers the upregulation of LINC00106, which promotes the stemness and metastasis properties in HCC cells by sponging let7f, thereby resulting in periostin activation. The findings indicate the potential of LINC00106 as a diagnostic marker and therapeutic target for HCC.


Sign in / Sign up

Export Citation Format

Share Document