scholarly journals HOXA-AS3 Promotes Proliferation and Migration of Hepatocellular Carcinoma Cells via the miR-455-5p/PD-L1 Axis

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Cheng Zeng ◽  
Shaojun Ye ◽  
Yu Chen ◽  
Qu Zhang ◽  
Yan Luo ◽  
...  

Hepatocellular carcinoma (HCC) is the most prevalent type of hepatic carcinoma. Long noncoding RNAs (lncRNAs) are considered crucial regulators of gene expression; however, their functions in HCC are not well understood. Thus, the present study is aimed at elucidating the functions of the lncRNA HOXA-AS3 in HCC. The functions of the HOXA-AS3/miR-455-5p/programmed death-ligand 1 (PD-L1) axis were investigated in vitro via qRT-PCR and dual-luciferase reporter assays. The effect of HOXA-AS3 expression on tumor growth and metastasis was assessed using a mouse xenograft model. High HOXA-AS3 expression was observed in the HCC cell lines. Furthermore, overexpression of HOXA-AS3 in HCC cells enhanced proliferation, migration, and invasion, regulated the cell cycle, and retarded apoptosis. We also identified an miR-455-5p binding site in HOXA-AS3. By sponging miR-455-5p, HOXA-AS3 increased the expression of PD-L1. Additionally, both the inhibition of PD-L1 and overexpression of miR-455-5p reversed the effects on cell proliferation and invasion triggered by the overexpression of HOXA-AS3. In conclusion, HOXA-AS3 modulated the functions of HCC cells through the miR-455-5p/PD-L1 axis. Therefore, HOXA-AS3 may be a novel therapeutic target for HCC.

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Lei Zhang ◽  
Jing Zhang ◽  
Pengfei Li ◽  
Ting Li ◽  
Zhiqin Zhou ◽  
...  

AbstractMacrophage-derived exosomes (Mφ-Exo) have multidimensional involvement in tumor initiation, progression, and metastasis, but their regulation in hepatocellular carcinoma (HCC) is not fully understood. RBPJ has been implicated in macrophage activation and plasticity. In this study we assess the role of exosomes derived from RBPJ-overexpressed macrophages (RBPJ+/+ Mφ-Exo) in HCC. The circular RNA (circRNA) profiles in RBPJ+/+ Mφ-Exo and THP-1-like macrophages (WT Mφ)-Exo was evaluated using circRNA microarray. CCK-8, Transwell, and flow cytometry analyses were used to evaluate the function of Mφ-Exo-circRNA on HCC cells. Luciferase reporter assays, RNA immunoprecipitation, and Pearson’s correlation analysis were used to confirm interactions. A nude mouse xenograft model was used to further analyze the functional significance of Mφ-Exo-cirRNA in vivo. Our results shown that hsa_circ_0004658 is upregulated in RBPJ+/+ Mφ-Exo compared to WT Mφ-Exo. RBPJ+/+ Mφ-Exo and hsa_circ_0004658 inhibits proliferation and promotes apoptosis in HCC cells, whereas hsa_circ_0004658 knockdown stimulated cell proliferation and migration but restrained apoptosis in vitro and promotes tumor growth in vivo. The effects of RBPJ+/+ Mφ-Exo on HCC cells can be reversed by the hsa_circ_0004658 knockdown. Mechanistic investigations revealed that hsa_circ_0004658 acts as a ceRNA of miR-499b-5p, resulting in the de-repression of JAM3. These results indicate that exosome circRNAs secreted from RBPJ+/+ Mφ inhibits tumor progression through the hsa_circ_0004658/miR-499b-5p/JAM3 pathway and hsa_circ_0004658 may be a diagnostic biomarker and potential target for HCC therapy.


2021 ◽  
Author(s):  
Junping Pan ◽  
Yingzhe Hu ◽  
Chenlu Yuan ◽  
Yafu Wu ◽  
Xinhua Zhu

Abstract Background Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high mortality and poor prognosis. Long non-coding RNAs NEAT1 (lncRNA NEAT1) have been found to play an important role in HCC progression. However, the role and potential molecular mechanism of lncRNA NEAT1 in HCC remain largely unclear. Methods The role of lncRNA NEAT1 both in vitro and in vivo was investigated, with RNA pull-down and RNA immunoprecipitation (RIP) assays being performed to determine the interaction among NEAT1 and FOXO3 and PKM2. In addition, HCC cells were treated with exosomes derived from NEAT1-overexpressing HCC cells, and then cell proliferation, migration and invasion were assessed using in vitro assays. Results In this study, overexpression of NEAT1 promoted the proliferation, migration and invasion of HCC cells, whereas NEAT1 knockdown exhibited the opposite effects. Mechanistically, NEAT1 was found to recruit transcription factor FOXO3 to PKM2 promoter region and upregulate PKM2 expression. Meanwhile, overexpression of NEAT1 increased tumor growth and metastasis in a mouse xenograft model of HCC in vivo via upregulation of PKM2. Furthermore, overexpression of NEAT1 promoted exosome release from HCC cells. Exosomes secreted from NEAT1-overexpressing HCC cells promoted the proliferation, migration and invasion of HCC cells. Conclusion We found that NEAT1 could promote HCC progression via upregulation of PKM2 and exosome-mediated transfer. These data indicated that NEAT1 may be a therapeutic target in HCC.


Author(s):  
Boqiang Liu ◽  
Yuanshi Tian ◽  
Mingyu Chen ◽  
Hao Shen ◽  
Jiafeng Xia ◽  
...  

BackgroundThe physiological regulatory functions of circRNAs have become a topic of intensive research in recent years. Increasing evidence supports a significant role of circRNAs during cancer initiation and progression, including hepatocellular carcinoma (HCC).Materials and MethodsA bioinformatics analysis from three independent Gene Expression Omnibus (GEO) databases was performed to profile and screen the dysregulated circRNAs in HCC. RT-qPCR was used to examine the expression level of circUBAP2 in HCC and adjacent non-tumor tissues. Then, proliferation assays (CCK8 and colony formation) and migration assays (transwell and wound healing) were performed to examine effect of circUBAP2 in vitro. Immunoprecipitation, RNA pulldown, FISH, and dual-luciferase reporter assay was conducted to explore the circUBAP2-related mechanism for regulating HCC progression. Moreover, a mouse xenograft model and a mouse lung metastasis model confirmed the effect of circUBAP2 in vivo.ResultsIn this study, we found a novel circRNA: circUBAP2, which was identified by bioinformatics analysis. Among 91 HCC patients, circUBAP2 was significantly upregulated in HCC tissues, and negatively correlated with aggressive clinical characteristics and prognosis. Functional assays demonstrated that circUBAP2 promoted cell proliferation, colony formation, migration, and invasion in vitro. Moreover, circUBAP2 enhanced tumor growth and pulmonary metastasis in vivo. Mechanistically, circUBAP2 acts as a competing endogenous RNA (ceRNA) for miR-194-3p, a tumor suppressor in HCC. We confirmed that MMP9 was direct target for miR-194-3p, which was regulated by circUBAP2.ConclusionCircUBAP2 plays a significant role in promoting HCC via the miR-194-3p/MMP9 pathway and could serve as a promising prognostic biomarker and novel therapeutic target for HCC patients.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Xiaoguang Gu ◽  
Jianan Zhang ◽  
Yajuan Ran ◽  
Hena Pan ◽  
JinHong Jia ◽  
...  

AbstractCircular RNAs have been reported to play significant roles in regulating pathophysiological processes while also guiding clinical diagnosis and treatment of hepatocellular carcinoma (HCC). However, only a few circRNAs have been identified thus far. Herein, we investigated the role of a specific closed-loop structure of hsa_circ_101555 that was generated by back-splicing of the host gene casein kinase 1 gamma 1 (CSNK1G1) in the development and proliferation of HCC. We investigated the expression of Hsa_circ_101555 in HCC and normal tissues using bioinformatics. The expression level of hsa_circ_101555 was further detected by fluorescence in situ hybridization and qRT-PCR in ten HCC patients. Transwell, migration, WST-1 assays, and colony formation assays were used to evaluate the role of hsa_circ_101555 in HCC development and proliferation. The regulatory mechanisms of hsa_circ_101555 in miR-145-5p and CDCA3 were determined by dual luciferase reporter assay. A mouse xenograft model was also used to determine the effect of hsa_circ_101555 on HCC growth in vivo. hsa_circ_101555 showed greater stability than the linear RNA; while in vitro and in vivo results demonstrated that hsa_circ_101555 silencing significantly suppressed cell proliferation, migration, and invasion of HCC cells. Rescue experiments further demonstrated that suppression of miR-145-5p significantly attenuated the biological effects of hsa_circ_101555 knockdown in HCC cells. We also identified a putative oncogene CDCA3 as a potential miR-145-5p target. Thus, our results demonstrated that hsa_circ_101555 might function as a competing endogenous RNA of miR-145-5p to upregulate CDCA3 expression in HCC. These findings suggest that hsa_circ_101555 may be a potential therapeutic target for patients with HCC.


Author(s):  
Gege Shu ◽  
Huizhao Su ◽  
Zhiqian Wang ◽  
Shihui Lai ◽  
Yan Wang ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) has an extremely poor prognosis due to the development of chemoresistance, coupled with inherently increased stemness properties. Long non-coding RNAs (LncRNAs) are key regulators for tumor cell stemness and chemosensitivity. Currently the relevance between LINC00680 and tumor progression was still largely unknown, with only one study showing its significance in glioblastoma. The study herein was aimed at identifying the role of LINC00680 in the regulation HCC stemness and chemosensitivity. Methods QRT-PCR was used to detect the expression of LINC00680, miR-568 and AKT3 in tissue specimen and cell lines. Gain- or loss-of function assays were applied to access the function of LINC00680 in HCC cells, including cell proliferation and stemness properties. HCC stemness and chemosensitivity were determined by sphere formation, cell viability and colony formation. Luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays were performed to examine the interaction between LINC00680 and miR-568 as well as that between miR-568 and AKT3. A nude mouse xenograft model was established for the in vivo study. Results We found that LINC00680 was remarkably upregulated in HCC tissues. Patients with high level of LINC00680 had poorer prognosis. LINC00680 overexpression significantly enhanced HCC cell stemness and decreased in vitro and in vivo chemosensitivity to 5-fluorouracil (5-Fu), whereas LINC00680 knockdown led to opposite results. Mechanism study revealed that LINC00680 regulated HCC stemness and chemosensitivity through sponging miR-568, thereby expediting the expression of AKT3, which further activated its downstream signaling molecules, including mTOR, elF4EBP1, and p70S6K. Conclusion LINC00680 promotes HCC stemness properties and decreases chemosensitivity through sponging miR-568 to activate AKT3, suggesting that LINC00680 might be a potentially important HCC diagnosis marker and therapeutic target.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Qun Dai ◽  
Jingyi Deng ◽  
Jinrong Zhou ◽  
Zhuhong Wang ◽  
Xiao-feng Yuan ◽  
...  

Abstract Background Accumulating evidence indicates that the long noncoding RNA taurine upregulated gene 1(TUG1) plays a critical role in cancer progression and metastasis. However, the overall biological role and clinical significance of TUG1 in hepatocellular carcinoma (HCC) remain largely unknown. Methods The expressions of TUG1, microRNA-216b-5p and distal-less homeobox 2 (DLX2) were detected by Quantitative real-time polymerase chain reaction (qRT-PCR). The target relationships were predicted by StarBase v.2.0 or TargetScan and confirmed by dual-luciferase reporter assay. The cell growth, apoptosis, migration and invasion were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Flow cytometry and Transwell assays, respectively. All protein expression levels were detected by western blot. Tumor xenografts were implemented to explore the role of TUG1 in vivo. Results We found that there was a marked rise in TUG1 expression in HCC tissues and cells, and knockdown of TUG1 repressed the growth and metastasis and promoted apoptosis of HCC cells. In particular, TUG1 could act as a ceRNA, effectively becoming a sink for miR-216b-5p to fortify the expression of DLX2. Additionally, repression of TUG1 impared the progression of HCC cells by inhibiting DLX2 expression via sponging miR-216b-5p in vitro. More importantly, TUG1 knockdown inhibited HCC tumor growth in vivo through upregulating miR-216b-5p via inactivation of the DLX2. Conclusion TUG1 interacting with miR-216b-5p contributed to proliferation, metastasis, tumorigenesis and retarded apoptosis by activation of DLX2 in HCC.


2020 ◽  
Author(s):  
Nan Yang ◽  
Tianxiang Chen ◽  
Bowen Yao ◽  
Liang Wang ◽  
Runkun Liu ◽  
...  

Abstract Background: Long non-coding RNAs (lncRNAs) have obtained growing attention due to their potential effects as novel regulators in various tumors. This study aimed to investigate the expression and roles of lncRNA ZFPM2-AS1 in the progression of hepatocellular carcinoma (HCC). Methods: Transwell was used to determine migration and invasion of HCC cells in vitro. The lung metastasis mouse model was established to detect tumor metastasis of HCC in vivo. The direct binding of miR-3612 to 3'UTR of DAM15 was confirmed by luciferase reporter assay. The expression of ZFPM2-AS1 and miR-3612 in HCC specimens and cell lines were detected by real-time PCR. The correlation among ZFPM2-AS1 and miR-3612 were disclosed by a dual-luciferase reporter assay, RIP assay and biotin pull-down assay.Results: In present study, we found that ZFPM2-AS1 was up-regulated in HCC tissues and cells and its upregulation was associated with TNM stage, vascular invasion, and poor prognosis of HCC patients. Functionally, gain- and loss-of-function experiments indicated that ZFPM2-AS1 promoted cell migration, invasion and EMT progress in vitro and in vivo. ZFPM2-AS1 could function as a competing endogenous RNA (ceRNA) by sponging miR-3612 in HCC cells. Mechanically, miR-3612 inhibited HCC metastasis and alternation of miR-3612 reversed the promotive effects of ZFPM2-AS1 on HCC cells. In addition, we confirmed that ADAM15 was a direct target of miR-3612 in HCC and mediated the biological effects of miR-3612 and ZFPM2-AS1 in HCC. Curcumin, an active derivative from turmeric, exerts its anticancer effects through ZFPM2-AS1/miR-3612/ADAM15 pathway. Our data identified ZFPM2-AS1 as a novel oncogenic lncRNA and correlated malignant clinical outcomes in HCC patients. Conclusions: ZFPM2-AS1 performed as oncogenic role via targeting miR-3612 and subsequently promoted ADAM15 expression in HCC. Our results revealed that ZFPM2-AS1 could be a potential prognostic biomarker and therapeutic target for HCC.


2021 ◽  
Author(s):  
Hai-Long Li ◽  
Jie Shi ◽  
Qi Qi ◽  
Yue Huang ◽  
Chi Liu ◽  
...  

Abstract MiR-130a-3p has been certified to have low expression in several types of tumors. However, the function of miR-130a-3p in glucose metabolism and hepatocellular carcinoma progression is still elusive. Here we report that miR-130a-3p has explicitly low expression in human HCC tissues and cells and is closely related to the patient's tumor size and grade. Overexpression of miR-130a-3p significantly inhibits the glucose metabolism, proliferation and migration of HCC cells in vitro. In order to further study the effects of miR-130a-3p in the glucose metabolism of HCC cells, we found that overexpression of miR-130a-3p significantly inhibited the expression of pyruvate dehydrogenase kinase 1 (PDK1). Consistently, we confirmed that PDK1 is the target gene of miR-130a-3p through dual luciferase reporter gene assays. Cell rescue experiments showed that PDK1 inhibitors reversed the enhancement of cell proliferation, migration and glucose metabolism by miR-130a-3p inhibitor in Hep3B cells. In terms of mechanism, overexpression of miR-130a-3p targeted and inhibited the expression of PDK1, after which pyruvate dehydrogenase (PDH) is activated, thus glycolysis is inhibited, the production of lactic acid and ATP is reduced, and the ability to proliferate and migrate in HCC cells is weakened. In conclusion, our study highlights efforts to target PDK1 and miR-130a-3p as potential therapeutic strategies for the treatment of HCC.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8409 ◽  
Author(s):  
Shi-shuo Wang ◽  
Zhi-guang Huang ◽  
Hua-yu Wu ◽  
Rong-quan He ◽  
Li-hua Yang ◽  
...  

Background Hepatocellular carcinoma (HCC) is the second-highest cause of malignancy-related death worldwide, and many physiological and pathological processes, including cancer, are regulated by microRNAs (miRNAs). miR-193a-3p is an anti-oncogene that plays an important part in health and disease biology by interacting with specific targets and signals. Methods In vitro assays were performed to explore the influences of miR-193a-3p on the propagation and apoptosis of HCC cells. The sequencing data for HCC were obtained from The Cancer Genome Atlas (TCGA), and the expression levels of miR-193a-3p in HCC and non-HCC tissues were calculated. The differential expression of miR-193a-3p in HCC was presented as standardized mean difference (SMD) with 95% confidence intervals (CIs) in Stata SE. The impact of miR-193a-3p on the prognoses of HCC patients was determined by survival analysis. The potential targets of miR-193a-3p were then predicted using miRWalk 2.0 and subjected to enrichment analyses, including Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Protein-Protein Interaction (PPI) network analysis. The interaction between miR-193a-3p and one predicted target, Cyclin D1 (CCND1), was verified by dual luciferase reporter assays and Pearson correlation analysis. Results MiR-193a-3p inhibited the propagation and facilitated the apoptosis of HCC cells in vitro. The pooled SMD indicated that miR-193a-3p had a low level of expression in HCC (SMD: −0.88, 95% CI [−2.36 −0.59]). Also, HCC patients with a higher level of miR-193a-3p expression tended to have a favorable overall survival (OS: HR = 0.7, 95% CI [0.43–1.13], P = 0.14). For the KEGG pathway analysis, the most related pathway was “proteoglycans in cancer”, while the most enriched GO term was “protein binding”. The dual luciferase reporter assays demonstrated the direct interaction between miR-193a-3p and CCND1, and the Pearson correlation analysis suggested that miR-193a-3p was negatively correlated with CCND1 in HCC tissues (R =  − 0.154, P = 0.002). Conclusion miR-193a-3p could suppress proliferation and promote apoptosis by targeting CCND1 in HCC cells. Further, miR-193a-3p can be used as a promising biomarker for the diagnosis and treatment of HCC in the future.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yahang Liang ◽  
Jingbo Shi ◽  
Qingsi He ◽  
Guorui Sun ◽  
Lei Gao ◽  
...  

Abstract Background Colorectal cancer (CRC) is one of the most common cancers worldwide. Circular RNAs (circRNAs), a novel class of non-coding RNAs, have been confirmed to be key regulators of many diseases. With many scholars devoted to studying the biological function and mechanism of circRNAs, their mysterious veil is gradually being revealed. In our research, we explored a new circRNA, hsa_circ_0026416, which was identified as upregulated in CRC with the largest fold change (logFC = 3.70) of the evaluated circRNAs via analysing expression profiling data by high throughput sequencing of members of the GEO dataset (GSE77661) to explore the molecular mechanisms of CRC. Methods qRT-PCR and western blot analysis were utilized to assess the expression of hsa_circ_0026416, miR-346 and Nuclear Factor I/B (NFIB). CCK-8 and transwell assays were utilized to examine cell proliferation, migration and invasion in vitro, respectively. A luciferase reporter assay was used to verify the combination of hsa_circ_0026416, miR-346 and NFIB. A nude mouse xenograft model was also utilized to determine the role of hsa_circ_0026416 in CRC cell growth in vivo. Results Hsa_circ_0026416 was markedly upregulated in CRC patient tissues and plasma and was a poor prognosis in CRC patients. In addition, the area under the curve (AUC) of hsa_circ_0026416 (0.767) was greater than the AUC of CEA (0.670), CA19-9 (0.592) and CA72-4 (0.575). Functionally, hsa_circ_0026416 promotes cell proliferation, migration and invasion both in vitro and in vivo. Mechanistically, hsa_circ_0026416 may function as a ceRNA via competitively absorbing miR-346 to upregulate the expression of NFIB. Conclusions In summary, our findings demonstrate that hsa_circ_0026416 is an oncogene in CRC. Hsa_circ_0026416 promotes the progression of CRC via the miR-346/NFIB axis and may represent a potential biomarker for diagnosis and therapy in CRC.


Sign in / Sign up

Export Citation Format

Share Document