scholarly journals Alpha-(1,6)-fucosyltransferase (FUT8) affects the survival strategy of osteosarcoma by remodeling TNF/NF-κB2 signaling

2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Shanyi Lin ◽  
Lenian Zhou ◽  
Yang Dong ◽  
Qingcheng Yang ◽  
Quanjun Yang ◽  
...  

AbstractGlycosylation is an important modification of membrane proteins that results in functional changes in many cellular activities, from cell-cell recognition to regulatory signaling. Fucosyltransferase 8 (FUT8) is the sole enzyme responsible for core fucosylation, and aberrant fucosylation by dysregulated expression of fucosyltransferases is responsible for the growth of various types of carcinomas. However, the function of FUT8 in the progress of osteosarcoma (OS) has not been reported. In this study, we found that FUT8 is expressed at lower levels in patients with OS and in human OS cell lines such as MNNG/HOS, U2OS, and 143B, suggesting that attenuated expression of FUT8 is involved in the growth and progression of OS. Mechanistically, FUT8 affects the survival strategy of OS by modifying core-fucosylation levels of TNF receptors (TNFRs). Lower fucosylation of TNFRs activates the non-canonical NF-κB signaling pathway, and in turn, decreases mitochondria-dependent apoptosis in OS cells. Together, our results point to FUT8 being a negative regulator of OS that enhances OS-cell apoptosis and suggests a novel therapeutic strategy for treating OS.

2001 ◽  
Vol 120 (5) ◽  
pp. A685-A685
Author(s):  
B SINGH ◽  
V MALMSTROM ◽  
F POWRIE

2020 ◽  
Vol 26 ◽  
Author(s):  
Maryam Dashtiahangar ◽  
Leila Rahbarnia ◽  
Safar Farajnia ◽  
Arash Salmaninejad ◽  
Arezoo Gowhari Shabgah ◽  
...  

: The development of recombinant immunotoxins (RITs) as a novel therapeutic strategy has made a revolution in the treatment of cancer. RITs are resulting from the fusion of antibodies to toxin proteins for targeting and eliminating cancerous cells by inhibiting protein synthesis. Despite indisputable outcomes of RITs regarding inhibiting multiple cancer types, high immunogenicity has been known as the main obstacle in the clinical use of RITs. Various strategies have been proposed to overcome these limitations, including immunosuppressive therapy, humanization of the antibody fragment moiety, generation of immunotoxins originated from endogenous human cytotoxic enzymes, and modification of the toxin moiety to escape the immune system. This paper devoted to reviewing recent advances in the design of immunotoxins with lower immunogenicity.


PLoS ONE ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. e0214250 ◽  
Author(s):  
Amanda H. Kahn-Kirby ◽  
Akiko Amagata ◽  
Celine I. Maeder ◽  
Janet J. Mei ◽  
Steve Sideris ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ting Wu ◽  
Yinghua Wang ◽  
Tianxiong Xiao ◽  
Yirui Ai ◽  
Jinsong Li ◽  
...  

Abstract Background Protein C receptor (Procr) has recently been shown to mark resident adult stem cells in the mammary gland, vascular system, and pancreatic islets. More so, high Procr expression was also detected and used as indicator for subsets of triple-negative breast cancers (TNBCs). Previous study has revealed Procr as a target of Wnt/β-catenin signaling; however, direct upstream regulatory mechanism of Procr remains unknown. To comprehend the molecular role of Procr during physiology and pathology, elucidating the upstream effectors of Procr is necessary. Here, we provide a system for screening negative regulators of Procr, which could be adapted for broad molecular analysis on membrane proteins. Results We established a screening system which combines CRISPR-Cas9 guided gene disruption with fluorescence activated cell sorting technique (FACS). CommaDβ (murine epithelial cells line) was used for the initial Procr upstream effector screening using lentiviral CRISPR-gRNA library. Shortlisted genes were further validated through individual lentiviral gRNA infection followed by Procr expression evaluation. Adam17 was identified as a specific negative inhibitor of Procr expression. In addition, MDA-MB-231 cells and Hs578T cells (human breast cancer cell lines) were used to verify the conserved regulation of ADAM17 over PROCR expression. Conclusion We established an efficient CRISPR-Cas9/FACS screening system, which identifies the regulators of membrane proteins. Through this system, we identified Adam17 as the negative regulator of Procr membrane expression both in mammary epithelial cells and breast cancer cells.


2020 ◽  
Vol 318 (5) ◽  
pp. H1296-H1307 ◽  
Author(s):  
Carlos J. Munoz ◽  
Ivan S. Pires ◽  
Jin Hyen Baek ◽  
Paul W. Buehler ◽  
Andre F. Palmer ◽  
...  

This study highlights the apoHb-Hp complex as a novel therapeutic strategy to attenuate the adverse systemic and microvascular responses to intravascular Hb and heme exposure. In vitro and in vivo Hb exchange and heme transfer experiments demonstrated proof-of-concept Hb/heme ligand transfer to apoHb-Hp. The apoHb-Hp complex reverses Hb- and heme-induced systemic hypertension and microvascular vasoconstriction, preserves microvascular blood flow, and functional capillary density. In summary, the unique properties of the apoHb-Hp complex prevent adverse systemic and microvascular responses to Hb and heme-albumin exposure and introduce a novel therapeutic approach to facilitate simultaneous removal of extracellular Hb and heme.


1998 ◽  
Vol 4 (3) ◽  
pp. 19
Author(s):  
HH Chen ◽  
JA Grantham ◽  
JA Schirger ◽  
M Jougasaki ◽  
O Lisy ◽  
...  

Open Biology ◽  
2011 ◽  
Vol 1 (3) ◽  
pp. 110010 ◽  
Author(s):  
Clive Metcalfe ◽  
Peter Cresswell ◽  
Laura Ciaccia ◽  
Benjamin Thomas ◽  
A. Neil Barclay

Redox conditions change in events such as immune and platelet activation, and during viral infection, but the biochemical consequences are not well characterized. There is evidence that some disulfide bonds in membrane proteins are labile while others that are probably structurally important are not exposed at the protein surface. We have developed a proteomic/mass spectrometry method to screen for and identify non-structural, redox-labile disulfide bonds in leucocyte cell-surface proteins. These labile disulfide bonds are common, with several classes of proteins being identified and around 30 membrane proteins regularly identified under different reducing conditions including using enzymes such as thioredoxin. The proteins identified include integrins, receptors, transporters and cell–cell recognition proteins. In many cases, at least one cysteine residue was identified by mass spectrometry as being modified by the reduction process. In some cases, functional changes are predicted (e.g. in integrins and cytokine receptors) but the scale of molecular changes in membrane proteins observed suggests that widespread effects are likely on many different types of proteins including enzymes, adhesion proteins and transporters. The results imply that membrane protein activity is being modulated by a ‘redox regulator’ mechanism.


Sign in / Sign up

Export Citation Format

Share Document