scholarly journals Pwp1 regulates telomere length by stabilizing shelterin complex and maintaining histone H4K20 trimethylation

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Yangyang Yu ◽  
Wenwen Jia ◽  
Yao Lyu ◽  
Dingwen Su ◽  
Mingliang Bai ◽  
...  

Abstract Telomere maintenance is critical for chromosome stability. Here we report that periodic tryptophan protein 1 (PWP1) is involved in regulating telomere length homeostasis. Pwp1 appears to be essential for mouse development and embryonic stem cell (ESC) survival, as homozygous Pwp1-knockout mice and ESCs have never been obtained. Heterozygous Pwp1-knockout mice had shorter telomeres and decreased reproductive capacity. Pwp1 depletion induced rapid telomere shortening accompanied by reduced shelterin complex and increased DNA damage in telomeric regions. Mechanistically, PWP1 bound and stabilized the shelterin complex via its WD40 domains and regulated the overall level of H4K20me3. The rescue of telomere length in Pwp1-deficient cells by PWP1 overexpression depended on SUV4-20H2 co-expression and increased H4K20me3. Therefore, our study revealed a novel protein involved in telomere homeostasis in both mouse and human cells. This knowledge will improve our understanding of how chromatin structure and histone modifications are involved in maintaining telomere integrity.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1880-1880
Author(s):  
Tomasz Stoklosa ◽  
Anna Deregowska ◽  
Katarzyna Pruszczyk ◽  
Iwona Solarska ◽  
Marcin M Machnicki ◽  
...  

Abstract Genomic instability has many sources, among others, shortening of telomeres, nucleoprotein complexes located at the ends of chromosomes. Tumor cells have aberrant mechanisms of telomere maintenance: their telomeres are shortened, no longer preventing chromosome end-to-end fusion and recombination, but frequently not short enough to lead to cell senescence. Both telomerase and shelterin complexes are involved in telomere homeostasis. Reduction in the telomere length is considered as one of the features of chronic myeloid leukemia (CML) similar to other human malignancies and telomere shortening is correlated with disease progression from the chronic phase (CML-CP) to the blastic phase (CML-BP)1. However, recent report shows that shorter telomeres can actually be detected in patients who discontinued imatinib and are in treatment-free remission as compared to those who relapsed2. Therefore, there is no agreement on the telomere length dynamics in CML evolution. Moreover, the precise role of telomere-associated proteins, including shelterin complex in BCR-ABL1-mediated genomic instability in CML progression and resistance to TKIs, is not fully elucidated. Initially, we confirmed that the telomere shortening was positively correlated with CML progression (CML-BP in comparison to CML-CP). However, in CD34+ samples from CML-CP TKI-resistant patients in comparison to CML-CP patients, an increase in telomere length was observed. This suggests that shortening of telomeres in CML progression may have a biphasic scenario. This can be explained by alternative telomere lengthening (ALT) mechanisms, since no significant changes in the expression of subunits of the telomerase complex and its enzymatic activity were observed at different phases of the disease; enzymatic activity of telomerase was measured immunoenzymatically, while length of telomeres was determined by Southern blotting. Then we decided to analyze possible involvement of shelterin complex and of ALT mechanisms in CML progression. Importantly, expression of the three members of the shelterin complex, Protection Of Telomeres 1 (POT1), Repressor Activator Protein 1 (RAP1) and Tankyrase 1 (TNKS1) was significantly upregulated in CML-BP (10 samples) as compared to CML-CP (15 samples) and was also positively correlated with BCR-ABL1 expression. Moreover, as determined by TKI treatment of CD34+ CML-BP primary cells, expression of POT1 was BCR-ABL1-dependent. No significant changes were observed in the expression of other members of the shelterin complex, namely TINT1-PTOP-PIP1 (TPP1), TRF1 interactor 2 (TIN2) and Tankyrase 2 (TNKS2). Also telomere repeat-binding factor 1 and 2 (TRF1 and TRF2), which are responsible for anchoring shelterin complex to the double stranded telomeric repeats remain stable in the course of the disease. Expression of subunits of telomerase and shelterin complexes was examined by RT-qPCR and Western blotting. This was confirmed in K562 and K562 imatinib-resistant cell line model. Somatic mutations in POT1 have been recently described in human tumors including chronic lymphocytic leukemia (CLL). In CLL, mutations in POT1 affect telomere stability and are associated with shorter survival in patients receiving chemotherapy as a frontline treatment. We have screened our NGS data from targeted sequencing in a cohort of patients who progressed to CML-BP (paired CP and BP samples, n=10 and BP samples, n=9) but we did not detect any somatic mutations in POT1. This is in accordance with our data on POT1 upregulated expression and suggests that dysregulation of shelterin complex during progression of CML differs significantly from CLL. In conclusion, we present the first comprehensive analysis of the expression of all members of the shelterin complex in the course of CML. We postulate that abnormal expression of selected members such as POT1, RAP1 and TNKS1 may be responsible for the aberrant telomere maintenance mechanisms in CML cells and may play an important role in genomic instability associated with CML progression. References: 1. Brummendorf TH, et al. Blood 2000; 95:1883-1890. 2. Caocci et al. Journal of Hematology & Oncology 2016; 9:63; Disclosures Seferynska: Novartis: Consultancy, Honoraria.


Author(s):  
Basak Celtikci ◽  
Gulnihal Kulaksiz Erkmen ◽  
Zeliha Gunnur Dikmen

: Telomeres are the protective end caps of eukaryotic chromosomes and they decide the proliferative lifespan of somatic cells, as the guardians of the cell replication. Telomere length in leucocytes reflects telomere length in other somatic cells. Leucocyte telomere length can be a biomarker of human ageing. The risk of diseases, which are associated with reduced cell proliferation and tissue degeneration, including aging or aging-associated diseases, such as dyskeratosis congenita, cardiovascular diseases, pulmonary fibrosis and aplastic anemia, are correlated with an increase in short telomeres. On the other hand, the risk of diseases, which are associated with increased proliferative growth, including major cancers, is correlated with long telomeres. In most of the cancers, a telomere maintenance mechanism during DNA replication is essential. The reactivation of the functional ribonucleoprotein holoenzyme complex [telomerase] starts the cascade from normal and premalignant somatic cells to advanced malignant cells. Telomerase is overexpressed during the development of cancer and embryonic stem cells, through controlling genome integrity, cancer formation and stemness. Cancer cells have mechanisms to maintain telomeres to avoid initiation of cellular senescence or apoptosis, and halting cell division by critically short telomeres. Modulation of the human telomerase reverse transcriptase is the ratelimiting step for the production of functional telomerase and the telomere maintenance. Human telomerase reverse transcriptase promoter promotes its gene expression only in tumor cells, but not in normal cells. Some cancers activate an alternative lengthening of telomeres maintenance mechanism via DNA recombination to unshorten their telomeres. Not only heritability but also oxidative stress, inflammation, environmental factors, and therapeutic interventions have an effect on telomere shortening, explaining the variability in telomere length across individuals. There have been a large number of publications, which correlate human diseases with progressive telomere shortening. Telomere length of an individual at birth is also important to follow up telomere shortening, and it can be used as biomarkers for healthy aging. On the other hand, understanding of cellular stress factors, which affect stem cell behavior, will be useful in regeneration or treatment in cancer and age-associated diseases. In this review, we will understand the connection between stem cell and telomere biology, cancer, and aging-associated diseases. This connection may be useful for discovering novel drug targets and improve outcomes for patients having cancer and aging-associated diseases.


2020 ◽  
Vol 45 (13) ◽  
pp. 2239-2247 ◽  
Author(s):  
Alish B. Palmos ◽  
Rodrigo R. R. Duarte ◽  
Demelza M. Smeeth ◽  
Erin C. Hedges ◽  
Douglas F. Nixon ◽  
...  

Abstract Short telomere length is a risk factor for age-related disease, but it is also associated with reduced hippocampal volumes, age-related cognitive decline and psychiatric disorder risk. The current study explored whether telomere shortening might have an influence on cognitive function and psychiatric disorder pathophysiology, via its hypothesised effects on adult hippocampal neurogenesis. We modelled telomere shortening in human hippocampal progenitor cells in vitro using a serial passaging protocol that mimics the end-replication problem. Serially passaged progenitors demonstrated shorter telomeres (P ≤ 0.05), and reduced rates of cell proliferation (P ≤ 0.001), with no changes in the ability of cells to differentiate into neurons or glia. RNA-sequencing and gene-set enrichment analyses revealed an effect of cell ageing on gene networks related to neurogenesis, telomere maintenance, cell senescence and cytokine production. Downregulated transcripts in our model showed a significant overlap with genes regulating cognitive function (P ≤ 1 × 10−5), and risk for schizophrenia (P ≤ 1 × 10−10) and bipolar disorder (P ≤ 0.005). Collectively, our results suggest that telomere shortening could represent a mechanism that moderates the proliferative capacity of human hippocampal progenitors, which may subsequently impact on human cognitive function and psychiatric disorder pathophysiology.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3857-3857
Author(s):  
Dominik G.F. Wolf ◽  
Anna M. Wolf ◽  
Christian Koppelstaetter ◽  
Holger F. Rumpold ◽  
Gert Mayer ◽  
...  

Abstract The expandability of CD4+CD25+ regulatory T-cells (Treg) has been shown in vitro and in vivo. Activation of telomerase activity is a prerequisite for clonal expansion and telomere maintenance in T-cells. There is currently no data available on the expression and function of telomerase in proliferating Treg. Analyses of telomere length by flow-FISH, real-time PCR and Southern blotting revealed that Treg isolated from healthy human volunteers have significantly shortened telomeres when compared to CD4+CD25− T-cells. However, telomere length is not further shortened in Treg isolated from the peripheral blood of cancer patients, despite the observation that the regulatory T-cell pool of these patients was significantly enlarged. To gain further insight into maintenance of telomere length of Treg, we induced in vitro proliferation of Treg by stimulation with anti-CD3 and IL-2. This led to a rapid increase of telomerase activity, as determined by PCR-ELISA. However, when we focused on the proliferating fraction of Treg using a sorting strategy based on the dilution of CFSE, we could show a significant telomere shortening in Treg with high proliferative and immmuno-suppressive capacity. Of note, proliferating CFSElow Treg are characterized by high telomerase activity, which however seems to be insufficient to avoid further telomere shortening under conditions of strong in vitro stimulation. In contrast, under conditions of in vivo expansion of Treg in cancer patients, the induction of telomerase activity is likely to compensate for further telomere erosion. These data might be of importance when considering the application of in vitro expanded Treg for the treatment of GvHD or autoimmune diseases, as telomere shortening might be associated with genomic instability.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 11107-11107
Author(s):  
A. M. Joshua ◽  
P. Marrano ◽  
A. Evans ◽  
T. Van der Kwast ◽  
M. Zielenska ◽  
...  

11107 Background: Many critical events in prostatic carcinogenesis appear to relate to the emergence of chromosomal instability and acquisition of genomic rearrangements. Characteristic abnormalities such as 8p loss, 8q gain, trisomy 7, PTEN microdeletions and TMPRSS2-ERG gene fusions appear to mediate mechanisms to increase neoplastic transformation in prostate cancer. Current evidence suggests that telomere dysfunction is a likely causative factor for some of these abnormalities on the basis of its relationship to mechanisms such as the break-fusion-bridge cycle that can lead to the onset of chromosomal instability. Methods: In this study, we correlated telomere length in various prostatic histologies by quantitative FISH with genomic markers of chromosomal instability by standard FISH and immunohistochemical measures of proliferation in 3 whole mount prostatectomies. Results: After analysing approximately 25,000 cells, we found that telomere shortening was correlated with an increase in the number of cells with abnormalities on chromosome 8, such as an increase in the average number of c-myc signals (r∼0.35, p∼0.02). However, there were no significant correlations with abnormalities such as trisomy 7 or abnormalities of the PTEN locus in any sample. Additional findings included; associations found with the probability of C-MYC aberrations in stroma with greater proximity to cancer (<1,000 um), a correlation between telomere length in a number of prostatic histologies (normal, atrophy, HPIN and cancer) with the adjacent stroma, and a lack of correlation between the Ki67 index of various histologies and their telomere length - all suggesting the importance of microenvironmental effects on telomere maintenance in the prostate. Finally, we also report significant telomere shortening in BPH in 2 cases, a phenomenon that has not been noted previously. Conclusions: This is the first study to directly link a mechanism of chromosomal instability with specific chromosomal abnormalities in prostatic carcinogenesis and also suggests that the microenvironmental milieu is of critical importance in the evolution of in vivo telomere homeostasis. No significant financial relationships to disclose.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1053-1053
Author(s):  
Monica Bessler ◽  
Rachida Bouharich ◽  
Shashikant Kulkarni ◽  
Sara Freeman ◽  
Hong-Yan Du ◽  
...  

Abstract Dyskeratosis congenita (DC) is the first human disease whose pathogenesis has been directly linked to an impairment of telomere maintenance. Telomeres protect chromosome ends from end to end fusion and degradation. Loss of telomere function causes cell cycle arrest or cell death. Telomeres are maintained by the telomerase ribonucloprotein complex whose integral RNA component, the telomerase RNA or TERC RNA, contains the sequences that act as a template for the synthesis of telomeric repeats. Autosomal dominant DC (AD DC), a rare inherited bone marrow failure syndrome, is caused by mutations in TERC, the RNA component of telomerase. Patients with AD DC have very short telomeres. Haploinsufficiency has been proposed to be the mechanism for telomere shortening in TERC gene mutation carriers. Individuals with AD DC not only inherited the TERC gene mutation but also the shortened telomeres from the affected parent. Here we studied the telomere dynamics over 3 generations in a 32-member extended family with AD DC due to a TERC gene deletion. The investigation of telomere length within a single family has the advantage that the molecular lesion responsible for telomere shortening is uniform and that the contribution of other genetic components influencing telomere length is similar. Our analysis shows that peripheral blood cells from family members haploinsufficient for TERC have very short telomeres (6.68 kb, range 5.53–8.45, SD 1.13, normal controls: 9.15 kb rage 8.56–10.77, SD 1.22). In contrast to normal controls, whose telomere lengths shorten with age, the telomere lengths in all individuals carrying the TERC gene deletion are equally short irrespective of their age. To study the inheritance of short telomeres and the effect of TERC haploinsufficiency on specific telomere lengths in affected individuals and their relatives we carried out Q-FISH analysis using polymorphic subtelomeric probes on chromosomes 11p, 7p, and 1p, which are able to distinguish the parental origin of telomeres in this family. Our analysis showed that in children of affected parents who have inherited the gene deletion, paternal and maternal telomeres are similarly short, and similar in length to those of the affected parent. In children of affected parents who have normal TERC genes paternal and maternal telomeres are again similar in length, and similar to those of the unaffected parent. These results are consistent with a model in which telomerase preferentially acts on the shortest telomeres. When TERC is limiting this leads to the accelerated shortening of longer telomeres and the accumulation of short telomeres. The limited amount of active telomerase in TERC RNA haploinsufficiency may not be able to maintain the minimal length of the increasing number of short telomeres. Thus, the number of critically short telomeres and the degree of residual telomerase activity may determine the onset of disease in patients with DC.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1310-1310
Author(s):  
M. Monica Gramatges ◽  
Ghadir S. Sasa ◽  
Robert B. Gerbing ◽  
Eunji Jo ◽  
Todd A. Alonzo ◽  
...  

Abstract Background The telomerase enzyme complex maintains telomeric DNA, the TTAGGG repeats localized to chromosome ends. Constitutional telomerase mutations are associated with short age-adjusted telomeres and a spectrum of disorders including familial pulmonary fibrosis and liver disease, aplastic anemia, myelodysplastic syndrome (MDS), and dyskeratosis congenita (DC). Notably, DC confers a 90% lifetime risk for bone marrow failure, a 200-fold risk for AML, a 2500-fold risk for MDS, and is associated with chemosensitivity in affected individuals. Exposure to intensive chemotherapy may accelerate telomere shortening and promote manifestations of a telomere biology disorder phenotype in individuals with underlying defects in telomere maintenance. Therefore, we investigated the incidence of constitutional telomerase variants in pediatric AML and their role in therapy-related adverse events (AE’s). We hypothesized that constitutional telomerase variants would be (1) more frequent in AML cases compared with controls, (2) associated with characteristics of telomere biology disorders, and (3) in addition to telomere length, would further characterize AML cases with specific AE’s. Methods We sequenced the exons and flanking intronic regions of the telomerase subunits TERT, DKC1, and TERC, as well as TINF2, a critical component in recruiting telomerase to telomeres, in a local pediatric AML/MDS cohort (n=104), a distinct Children’s Oncology Group (COG) AML AAML0531 study cohort (n=115), and a cohort of healthy controls racially and ethnically matched to our local AML/MDS cohort (n=254). We reviewed medical records in the local cohort for characteristics suggestive of DC, including first degree family history of cancer, liver, or pulmonary disease, delay in chemotherapy >60 days due to cytopenias(s), persistent liver or pulmonary disease, persistent cytopenias after AML therapy, history of second cancer, and specific skin, nail, and mucosal abnormalities. For the COG cohort, we compared the number of variants and remission relative telomere length (RTL), measured by qPCR, in subjects with time to absolute neutrophil count (ANC) recovery at least 1 SD above the mean for at least 2 chemotherapy courses (n=53) to those with time to ANC recovery within 1 SD above the mean for all 5 chemotherapy courses (n=62). A relationship between variants, telomere length, and specific grade 3 or 4 AE’s was also explored. Results In the local AML/MDS cohort, 13 variants resulting in missense changes or deletions were found in 21/101 subjects (20.8%). When compared with population databases, the number of novel variants in this cohort (8/13) far exceeded the expected number (p<0.0001), and remained significantly high after comparison to local controls (p<0.0001). Retrospective medical record review demonstrated a significant association between presence of a variant and 2 or more features of DC (p=0.047). When evaluated by logistic regression, the total number of DC features was predictive but not statistically significant (p=0.052). However, skin, nail, and mucosal abnormalities were significantly predictive of a variant (p=0.039). Within the COG AML cohort, no significant difference was noted in the number of variants with respect to ANC recovery, nor was the presence of a variant predictive of specific severe AE’s. RTL’s were divided into quartiles, and the shortest quartile compared to the remaining quartiles relative to time to ANC recovery and AE’s for each chemotherapy cycle. Though no association was noted with specific AE’s, in the fourth chemotherapy cycle we observed a significant association between the shortest RTL quartile and delays in ANC recovery (p=0.03), an effect also seen in the fifth chemotherapy cycle, though not significant (p=0.08). Conclusions Cases of pediatric AML demonstrate a propensity for novel constitutional variants in telomerase-related genes. Moreover, presence of a variant is associated with characteristics specific to defects in telomere biology. Shorter telomeres are associated with significant delays in time to ANC recovery in later cycles of AML chemotherapy, presumably reflecting a stress in capacity for hematopoietic reconstitution. Prospective evaluation of the effects of telomerase variants and telomere shortening over time, as well as correlative functional analyses, may provide valuable insight to therapy-related AE’s in pediatric AML. Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 144 (4) ◽  
pp. 589-601 ◽  
Author(s):  
M. Prakash Hande ◽  
Enrique Samper ◽  
Peter Lansdorp ◽  
María A. Blasco

To study the effect of continued telomere shortening on chromosome stability, we have analyzed the telomere length of two individual chromosomes (chromosomes 2 and 11) in fibroblasts derived from wild-type mice and from mice lacking the mouse telomerase RNA (mTER) gene using quantitative fluorescence in situ hybridization. Telomere length at both chromosomes decreased with increasing generations of mTER−/− mice. At the 6th mouse generation, this telomere shortening resulted in significantly shorter chromosome 2 telomeres than the average telomere length of all chromosomes. Interestingly, the most frequent fusions found in mTER−/− cells were homologous fusions involving chromosome 2. Immortal cultures derived from the primary mTER−/− cells showed a dramatic accumulation of fusions and translocations, revealing that continued growth in the absence of telomerase is a potent inducer of chromosomal instability. Chromosomes 2 and 11 were frequently involved in these abnormalities suggesting that, in the absence of telomerase, chromosomal instability is determined in part by chromosome-specific telomere length. At various points during the growth of the immortal mTER−/− cells, telomere length was stabilized in a chromosome-specific man-ner. This telomere-maintenance in the absence of telomerase could provide the basis for the ability of mTER−/− cells to grow indefinitely and form tumors.


2001 ◽  
Vol 21 (23) ◽  
pp. 7933-7943 ◽  
Author(s):  
Yuhong Fan ◽  
Allen Sirotkin ◽  
Robert G. Russell ◽  
Julianna Ayala ◽  
Arthur I. Skoultchi

ABSTRACT H1 linker histones are involved in facilitating the folding of chromatin into a 30-nm fiber. Mice contain eight H1 subtypes that differ in amino acid sequence and expression during development. Previous work showed that mice lacking H10, the most divergent subtype, develop normally. Examination of chromatin in H10−/− mice showed that other H1s, especially H1c, H1d, and H1e, compensate for the loss of H10 to maintain a normal H1-to-nucleosome stoichiometry, even in tissues that normally contain abundant amounts of H10 (A. M. Sirotkin et al., Proc. Natl. Acad. Sci. USA 92:6434–6438, 1995). To further investigate the in vivo role of individual mammalian H1s in development, we generated mice lacking H1c, H1d, or H1e by homologous recombination in mouse embryonic stem cells. Mice lacking any one of these H1 subtypes grew and reproduced normally and did not exhibit any obvious phenotype. To determine whether one of these H1s, in particular, was responsible for the compensation present in H10−/− mice, each of the three H1 knockout mouse lines was bred with H10 knockout mice to generate H1c/H10, H1d/H10, or H1e/H10double-knockout mice. Each of these doubly H1-deficient mice also was fertile and exhibited no anatomic or histological abnormalities. Chromatin from the three double-knockout strains showed no significant change in the ratio of total H1 to nucleosomes. These results suggest that any individual H1 subtype is dispensable for mouse development and that loss of even two subtypes is tolerated if a normal H1-to-nucleosome stoichiometry is maintained. Multiple compound H1 knockouts will probably be needed to disrupt the compensation within this multigene family.


Sign in / Sign up

Export Citation Format

Share Document