scholarly journals Phase I study of CAR-T cells with PD-1 and TCR disruption in mesothelin-positive solid tumors

Author(s):  
Zhenguang Wang ◽  
Na Li ◽  
Kaichao Feng ◽  
Meixia Chen ◽  
Yan Zhang ◽  
...  

AbstractProgrammed cell death protein-1 (PD-1)-mediated immunosuppression has been proposed to contribute to the limited clinical efficacy of chimeric antigen receptor T (CAR-T) cells in solid tumors. We generated PD-1 and T cell receptor (TCR) deficient mesothelin-specific CAR-T (MPTK-CAR-T) cells using CRISPR-Cas9 technology and evaluated them in a dose-escalation study. A total of 15 patients received one or more infusions of MPTK-CAR-T cells without prior lymphodepletion. No dose-limiting toxicity or unexpected adverse events were observed in any of the 15 patients. The best overall response was stable disease (2/15 patients). Circulating MPTK-CAR-T cells peaked at days 7–14 and became undetectable beyond 1 month. TCR-positive CAR-T cells rather than TCR-negative CAR-T cells were predominantly detected in effusion or peripheral blood from three patients after infusion. We further confirmed the reduced persistence of TCR-deficient CAR-T cells in animal models. Our results establish the preliminary feasibility and safety of CRISPR-engineered CAR-T cells with PD-1 disruption and suggest that the natural TCR plays an important role in the persistence of CAR-T cells when treating solid tumors.

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3038-3038
Author(s):  
Zhenguang Wang ◽  
Meixia Chen ◽  
Yan Zhang ◽  
Yang Liu ◽  
Qingming Yang ◽  
...  

3038 Background: Our previous phase I study with MPTK-CAR-T (mesothelin-directed 28ζ CAR-T cells with PD-1 and TCR disruption by CRISPR-Cas9 system) demonstrated feasibility and safety of CRISPR-mediated PD-1 inactivation in CAR-T cells, and suggested the natural TCR is beneficial for the proliferation of CAR-T cells in solid tumors. Based on these observations, we initiated a pilot dose escalation study to investigate mesothelin-directed CAR-T cells with only PD-1 disruption by CRISPR (termed as GC008t) in patients with mesothelin-positive advanced solid tumors (NCT03747965). Methods: On the data cut-off date (Jan 20, 2020), nine patients (6 pancreatic cancers, 2 ovarian cancers, 1 colorectal cancer) were treated (5 received ≥12 numbers of therapy), three in cohort 1 (0.1-0.2×107/kg), four in cohort 2 (0.5-1.0×107/kg), two in cohort 3 (2.5-5×107/kg). Eight of the 9 patients received lymphodepletion regimen of cyclophosphamide and nab-paclitaxel with or without gemcitabine. Four of the 9 patients received repeat infusions of GC008t per protocol. Results: Comparable proliferation capacity was observed in vitro between the MPTK-CAR-T and the GC008t products. The mean PD-1 surface expression in cell products was 0.5% (range, 0.2%-0.9%). GC008t infusions were well tolerated with no observed on-target/off-tumor toxicity, autoimmune activity. Only two patients in cohort 3 developed grade 1 CRS with fever and rash. Circulating GC008t expanded with a peak at day 7-14 and became undetectable by qPCR beyond 1 month. The mean peak levels of circulating CAR-T cells between GC008t and MPTK-CAR-T at similar dose level were not statistically significant. Failure of GC008t engraftment after repeat infusion was observed in 2 out of 4 patients. The best response of the 7 evaluable patients was stable disease in 4 and partial response in 2 patients (dosed ≥ 1×107/kg) with PFS of 80 and 160 days. Conclusions: Phase I trial of GC008t further establishes that genetic inactivation of PD-1 in CAR-T cells by CRISPR is feasible and safe. The expansion and persistence of CAR-T cells with PD-1 disruption is not improved significantly even in the setting of natural TCR and lymphodepletion. Future endeavors are needed to improve the clinical efficacy of CAR-T therapy in the treatment of solid tumor. Clinical trial information: NCT03747965 .


2016 ◽  
Vol 44 (2) ◽  
pp. 412-418 ◽  
Author(s):  
Oladapo O. Yeku ◽  
Renier J. Brentjens

Chimaeric antigen receptor (CAR) T-cells are T-cells that have been genetically modified to express an artificial construct consisting of a synthetic T-cell receptor (TCR) targeted to a predetermined antigen expressed on a tumour. Coupling the T-cell receptor to a CD3ζ signalling domain paved the way for first generation CAR T-cells that were efficacious against cluster of differentiation (CD)19-expressing B-cell malignancies. Optimization with additional signalling domains such as CD28 or 4-1BB in addition to CD3ζ provided T-cell activation signal 2 and further improved the efficacy and persistence of these second generation CAR T-cells. Third generation CAR T-cells which utilize two tandem costimulatory domains have also been reported. In this review, we discuss a different approach to optimization of CAR T-cells. Through additional genetic modifications, these resultant armored CAR T-cells are typically modified second generation CAR T-cells that have been further optimized to inducibly or constitutively secrete active cytokines or express ligands that further armor CAR T-cells to improve efficacy and persistence. The choice of the ‘armor’ agent is based on knowledge of the tumour microenvironment and the roles of other elements of the innate and adaptive immune system. Although there are several variants of armored CAR T-cells under investigation, here we focus on three unique approaches using interleukin-12 (IL-12), CD40L and 4-1BBL. These agents have been shown to further enhance CAR T-cell efficacy and persistence in the face of a hostile tumour microenvironment via different mechanisms.


Author(s):  
Dana Stenger ◽  
Tanja Stief ◽  
Theresa Käuferle ◽  
Semjon Manuel Willier ◽  
Felicitas Rataj ◽  
...  

2016 ◽  
Vol 24 ◽  
pp. S78 ◽  
Author(s):  
Christina Pham ◽  
Aaron Martin ◽  
Jeyaraj Antony ◽  
Daniel MacLeod ◽  
Audrey Brown ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3087-3087 ◽  
Author(s):  
Yasmine van Caeneghem ◽  
Glenn Goetgeluk ◽  
Karin Weening ◽  
Greet Verstichel ◽  
Sarah Bonte ◽  
...  

Abstract Autologous T cells transduced to express chimeric antigen receptors (CAR) directed against CD19, a B cell antigen, are reported to induce complete remission in patients with leukemia or lymphoma of the B cell lineage. Although potentially very effective, this treatment strategy has major drawbacks. First, CAR therapy is based on autologous T cells and therefore dependent on the nature and quality of T cells present in the peripheral blood of these patients at the time of treatment. Poor quality of the T cells may cause treatment failure in some patients. In addition, therapy based on autologous cells is tailor-made i.e. CAR+ T cells have to be generated de novo for every patient. Finally, autologous cell therapy requires different, more complicated logistics than conventional therapy. We therefore investigate whether a general purpose, allogeneic CAR therapy based on HLA-matched cord blood obtained from cord blood banks can be devised. Here, we investigated whether functional CAR+ T cells can be generated in vitro that do not express an endogenous T cell receptor to avoid alloreactivity causing graft versus host reactions. We compared carcino-embryonic antigen (CEA)- specific CARs of the first generation (intracellular CD3ζ signaling chain), of the 2nd generation (intracellular CD3ζ and CD28 signaling chain) and of the 3rd generation (intracellular CD3ζ, CD28 and OX40 signaling chain). CD34+ progenitor cells were isolated from human cord blood or postnatal thymus and subsequently transduced with one of the three green fluorescent protein (GFP)-encoding CAR constructs. Transduced cells were subsequently co-cultured on OP9DL1 in the presence of stem cell factor, Flt3-ligand and interleukin-7. Unlike T cell receptor transduced precursors (1), expansion was not enhanced by transduction of the chimeric receptor. Expansion was highest with first generation CARs whereas second and third generation CARs displayed only restricted expansion. Similar to T cell receptor transduced progenitors, CAR transduced cells show an accelerated differentiation during co-culture compared to the non-transduced cells: first committed CD5+ CD7+ T precursors appear, then CD4+ CD8+ double positive cells (DP) and finally CD1- CD27- single positive or double negative (DN) mature T cells. In cultures transduced with 2nd and 3rd generation CARs, few transduced cells passed through the proliferative DP pathway but rather differentiated to mature CD1- CD27- non-proliferative DN cells without passing through the DP stage. This phenomenon is responsible for the limited expansion seen with precursors transgenic for 2nd or 3rd generation CARs. However, in all cultures CAR+ DP cells were generated and, as shown for TCR transgenic cells (1), we were able to induce CEA specific maturation after co-culturing these DP cells with a cell line expressing CEA or by antibody-induced cross-linking of the CAR, giving rise to CD1- CD27+ matured cells. The observations described above are compatible with data obtained in mice showing that strong T cell receptor (TCR) activation during thymocyte differentiation inhibits the generation of DP cells and induces maturation to DN cells. Both the spontaneously and induced mature CAR+ cells were TCR and CD3 negative, suggesting that the expression of a CAR in early T cell precursors shuts down rearrangements of the endogenous TCR chains. Moreover, these cells lack NK marker expression (CD56, NKG2D) and show expression of T cell markers (CD5, CD7, CD2), confirming their T cell nature. In conclusion, the CAR+ CD3/TCR negative cells are T cells as these are derived from T cell precursors (CD5+, DP cells) and express various membrane and nuclear T cell markers. Mature CD1- CD27- CAR+ cells can be expanded to large cell numbers using T cell expansion protocols. They displayed cytokine production specific for CEA+ tumor lines as well as specific cytotoxicity. Moreover, the 2nd and 3rd generation CAR expressing cells showed increased specific cytokine production when compared to the first generation CAR expressing cells. These results show that the cord blood-derived CAR+ cells have potent functional activity similar to peripheral blood derived CAR+ T cells. We believe that these in vitro generated CAR+ cells developed from HLA-matched cord blood progenitors may be ideal as an adjunct to cord blood transplantation. (1) Snauwaert et al, Leukemia, 2014 Disclosures No relevant conflicts of interest to declare.


Author(s):  
Xuejin Ou ◽  
Qizhi Ma ◽  
Wei Yin ◽  
Xuelei Ma ◽  
Zhiyao He

In recent years, immunotherapy has showed fantastic promise in pioneering and accelerating the field of cancer therapy and embraces unprecedented breakthroughs in clinical practice. The clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (CRISPR-Cas9) system, as a versatile gene-editing technology, lays a robust foundation to efficiently innovate cancer research and cancer therapy. Here, we summarize recent approaches based on CRISPR/Cas9 system for construction of chimeric antigen receptor T (CAR-T) cells and T cell receptor T (TCR-T) cells. Besides, we review the applications of CRISPR/Cas9 in inhibiting immune checkpoint signaling pathways and highlight the feasibility of CRISPR/Cas9 based engineering strategies to screen novel cancer immunotherapy targets. Conclusively, we discuss the perspectives, potential challenges and possible solutions in this vivid growing field.


2018 ◽  
Vol 10 (3) ◽  
pp. 203-16
Author(s):  
Anna Meiliana ◽  
Nurrani Mustika Dewi ◽  
Andi Wijaya

BACKGROUND: Current cancer drugs and treatments are aiming at eradicating tumor cells, but often are more toxic then effective, killing also the normal cells and not selectively the tumor cells. There is good personalized cancer therapy that involves administration to the cancer-bearing host of immune cells with direct anticancer activity, which called adoptive cell therapy (ACT). A review of the unique biology of T cell therapy and of recent clinical experience compels a reassessment of target antigens that traditionally have been viewed from the perspective of weaker immunotherapeutic modalities.CONTENT: Chimeric antigen receptors (CAR) are recombinant receptors which provide both antigen-binding and T cell-activating functions. Many kind of CARs has been reported for the past few years, targeting an array of cell surface tumor antigens. Their biologic functions have extremely changed following the introduction of tripartite receptors comprising a costimulatory domain, termed second-generation CARs. The combination of CARs with costimulatory ligands, chimeric costimulatory receptors, or cytokines can be done to further enhance T cell potency, specificity and safety. CARs reflects a new class of drugs with exciting potential for cancer immunotherapy.SUMMARY: CAR-T cells have been arising as a new modality for cancer immunotherapy because of their potent efficacy against terminal cancers. They are known to exert higher efficacy than monoclonal antibodies and antibodydrug conjugates, and act via mechanisms distinct from T cell receptor-engineered T cells. These cells are constructed by transducing genes encoding fusion proteins of cancer antigen-recognizing single-chain Fv linked to intracellular signaling domains of T cell receptors.KEYWORDS: chimeric antigen receptor, CAR T cells, adoptive cell therapy, ACT, T cell receptor, TCR, cancer, immunotherapy


2021 ◽  
Vol 13 (586) ◽  
pp. eabb5191
Author(s):  
Yue Liu ◽  
Guangna Liu ◽  
Jiasheng Wang ◽  
Zhe-yu Zheng ◽  
Lemei Jia ◽  
...  

Chimeric antigen receptor T (CAR-T) cell therapies have demonstrated high response rate and durable disease control for the treatment of B cell malignancies. However, in the case of solid tumors, CAR-T cells have shown limited efficacy, which is partially attributed to intrinsic defects in CAR signaling. Here, we construct a double-chain chimeric receptor, termed as synthetic T cell receptor (TCR) and antigen receptor (STAR), which incorporates antigen-recognition domain of antibody and constant regions of TCR that engage endogenous CD3 signaling machinery. Under antigen-free conditions, STAR does not trigger tonic signaling, which has been reported to cause exhaustion of traditional CAR-T cells. Upon antigen stimulation, STAR mediates strong and sensitive TCR-like signaling, and STAR-T cells exhibit less susceptibility to dysfunction and better proliferation than traditional 28zCAR-T cells. In addition, STAR-T cells show higher antigen sensitivity than CAR-T cells, which holds potential to reduce the risk of antigen loss–induced tumor relapse in clinical use. In multiple solid tumor models, STAR-T cells prominently outperformed BBzCAR-T cells and generated better or equipotent antitumor effects to 28zCAR-T cells without causing notable toxicity. With these favorable features endowed by native TCR-like signaling, STAR-T cells may provide clinical benefit in treating refractory solid tumors.


Sign in / Sign up

Export Citation Format

Share Document