scholarly journals Sequence variants in malignant hyperthermia genes in Iceland: classification and actionable findings in a population database

Author(s):  
Run Fridriksdottir ◽  
Arnar J. Jonsson ◽  
Brynjar O. Jensson ◽  
Kristinn O. Sverrisson ◽  
Gudny A. Arnadottir ◽  
...  

AbstractMalignant hyperthermia (MH) susceptibility is a rare life-threatening disorder that occurs upon exposure to a triggering agent. MH is commonly due to protein-altering variants in RYR1 and CACNA1S. The American College of Medical Genetics and Genomics recommends that when pathogenic and likely pathogenic variants in RYR1 and CACNA1S are incidentally found, they should be reported to the carriers. The detection of actionable variants allows the avoidance of exposure to triggering agents during anesthesia. First, we report a 10-year-old Icelandic proband with a suspected MH event, harboring a heterozygous missense variant NM_000540.2:c.6710G>A r.(6710g>a) p.(Cys2237Tyr) in the RYR1 gene that is likely pathogenic. The variant is private to four individuals within a three-generation family and absent from 62,240 whole-genome sequenced (WGS) Icelanders. Haplotype sharing and WGS revealed that the variant occurred as a somatic mosaicism also present in germline of the proband’s paternal grandmother. Second, using a set of 62,240 Icelanders with WGS, we assessed the carrier frequency of actionable pathogenic and likely pathogenic variants in RYR1 and CACNA1S. We observed 13 actionable variants in RYR1, based on ClinVar classifications, carried by 43 Icelanders, and no actionable variant in CACNA1S. One in 1450 Icelanders carries an actionable variant for MH. Extensive sequencing allows for better classification and precise dating of variants, and WGS of a large fraction of the population has led to incidental findings of actionable MH genotypes.

2021 ◽  
Vol 8 ◽  
Author(s):  
Meng Yuan ◽  
Yi Guo ◽  
Hong Xia ◽  
Hongbo Xu ◽  
Hao Deng ◽  
...  

Brugada syndrome (BrS) is a complexly genetically patterned, rare, malignant, life-threatening arrhythmia disorder. It is autosomal dominant in most cases and characterized by identifiable electrocardiographic patterns, recurrent syncope, nocturnal agonal respiration, and other symptoms, including sudden cardiac death. Over the last 2 decades, a great number of variants have been identified in more than 36 pathogenic or susceptibility genes associated with BrS. The present study used the combined method of whole exome sequencing and Sanger sequencing to identify pathogenic variants in two unrelated Han-Chinese patients with clinically suspected BrS. Minigene splicing assay was used to evaluate the effects of the splicing variant. A novel heterozygous splicing variant c.2437-2A>C in the sodium voltage-gated channel alpha subunit 5 gene (SCN5A) and a novel heterozygous missense variant c.161A>T [p.(Asp54Val)] in the glycerol-3-phosphate dehydrogenase 1 like gene (GPD1L) were identified in these two patients with BrS-1 and possible BrS-2, respectively. Minigene splicing assay indicated the deletion of 15 and 141 nucleotides in exon 16, resulting in critical amino acid deletions. These findings expand the variant spectrum of SCN5A and GPD1L, which can be beneficial to genetic counseling and prenatal diagnosis.


2017 ◽  
Vol 49 (2) ◽  
pp. 81-87 ◽  
Author(s):  
Teresa A. Beam ◽  
Emily F. Loudermilk ◽  
David F. Kisor

A review of the pharmacogenetics (PGt) and pathophysiology of calcium voltage-gated channel subunit alpha1 S ( CACNA1S) mutations in malignant hyperthermia susceptibility type 5 (MHS5; MIM #60188) is presented. Malignant hyperthermia (MH) is a life-threatening hypermetabolic state of skeletal muscle usually induced by volatile, halogenated anesthetics and/or the depolarizing neuromuscular blocker succinylcholine. In addition to ryanodine receptor 1 (RYR1) mutations, several CACNA1S mutations are known to be risk factors for increased susceptibility to MH (MHS). However, the presence of these pathogenic CACNA1S gene variations cannot be used to positively predict MH since the condition is genetically heterogeneous with variable expression and incomplete penetrance. At present, one or at most six CACNA1S mutations display significant linkage or association either to clinically diagnosed MH or to MHS as determined by contracture testing. Additional pathogenic variants in CACNA1S, either alone or in combination with genes affecting Ca2+ homeostasis, are likely to be discovered in association to MH as whole exome sequencing becomes more commonplace.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Qing Liu ◽  
Mengling Liu ◽  
Tianshu Liu ◽  
Yiyi Yu

Abstract Background Juvenile polyposis syndrome (JPS) is a rare autosomal dominant hereditary disorder characterized by the development of multiple distinct juvenile polyps in the gastrointestinal tract with an increased risk of colorectal cancer. Germline mutations in two genes, SMAD4 and BMPR1A, have been identified to cause JPS. Case presentation Here, we report a germline heterozygous missense variant (c.299G > A) in exon 3 BMPR1A gene in a family with juvenile polyposis. This variant was absent from the population database, and concluded as de novo compared with the parental sequencing. Further sequencing of the proband’s children confirmed the segregation of this variant with the disease, while the variant was also predicted to have damaging effect based on online prediction tools. Therefore, this variant was classified as likely pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Conclusions Germline genetic testing revealed a de novo germline missense variant in BMPR1A gene in a family with juvenile polyposis. Identification of the pathogenic variant facilitates the cancer risk management of at-risk family members, and endoscopic surveillance is recommended for mutation carriers.


Author(s):  
Suzanne C. E. H. Sallevelt ◽  
Alexander P. A. Stegmann ◽  
Bart de Koning ◽  
Crool Velter ◽  
Anja Steyls ◽  
...  

Abstract Purpose Consanguineous couples are at increased risk of being heterozygous for the same autosomal recessive (AR) disorder(s), with a 25% risk of affected offspring as a consequence. Until recently, comprehensive preconception carrier testing (PCT) for AR disorders was unavailable in routine diagnostics. Here we developed and implemented such a test in routine clinical care. Methods We performed exome sequencing (ES) for 100 consanguineous couples. For each couple, rare variants that could give rise to biallelic variants in offspring were selected. These variants were subsequently filtered against a gene panel consisting of ~2,000 genes associated with known AR disorders (OMIM-based). Remaining variants were classified according to American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines, after which only likely pathogenic and pathogenic (class IV/V) variants, present in both partners, were reported. Results In 28 of 100 tested consanguineous couples (28%), likely pathogenic and pathogenic variants not previously known in the couple or their family were reported conferring 25% risk of affected offspring. Conclusion ES-based PCT provides a powerful diagnostic tool to identify AR disease carrier status in consanguineous couples. Outcomes provided significant reproductive choices for a higher proportion of these couples than previous tests.


Author(s):  
Pauline Arnaud ◽  
Hélène Morel ◽  
Olivier Milleron ◽  
Laurent Gouya ◽  
Christine Francannet ◽  
...  

Abstract Purpose Individuals with mosaic pathogenic variants in the FBN1 gene are mainly described in the course of familial screening. In the literature, almost all these mosaic individuals are asymptomatic. In this study, we report the experience of our team on more than 5,000 Marfan syndrome (MFS) probands. Methods Next-generation sequencing (NGS) capture technology allowed us to identify five cases of MFS probands who harbored a mosaic pathogenic variant in the FBN1 gene. Results These five sporadic mosaic probands displayed classical features usually seen in Marfan syndrome. Combined with the results of the literature, these rare findings concerned both single-nucleotide variants and copy-number variations. Conclusion This underestimated finding should not be overlooked in the molecular diagnosis of MFS patients and warrants an adaptation of the parameters used in bioinformatics analyses. The five present cases of symptomatic MFS probands harboring a mosaic FBN1 pathogenic variant reinforce the fact that apparently asymptomatic mosaic parents should have a complete clinical examination and a regular cardiovascular follow-up. We advise that individuals with a typical MFS for whom no single-nucleotide pathogenic variant or exon deletion/duplication was identified should be tested by NGS capture panel with an adapted variant calling analysis.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Elisabeth A. Rosenthal ◽  
David R. Crosslin ◽  
Adam S. Gordon ◽  
David S. Carrell ◽  
Ian B. Stanaway ◽  
...  

Abstract Background Elevated triglycerides (TG) are associated with, and may be causal for, cardiovascular disease (CVD), and co-morbidities such as type II diabetes and metabolic syndrome. Pathogenic variants in APOA5 and APOC3 as well as risk SNVs in other genes [APOE (rs429358, rs7412), APOA1/C3/A4/A5 gene cluster (rs964184), INSR (rs7248104), CETP (rs7205804), GCKR (rs1260326)] have been shown to affect TG levels. Knowledge of genetic causes for elevated TG may lead to early intervention and targeted treatment for CVD. We previously identified linkage and association of a rare, highly conserved missense variant in SLC25A40, rs762174003, with hypertriglyceridemia (HTG) in a single large family, and replicated this association with rare, highly conserved missense variants in a European American and African American sample. Methods Here, we analyzed a longitudinal mixed-ancestry cohort (European, African and Asian ancestry, N = 8966) from the Electronic Medical Record and Genomics (eMERGE) Network. We tested associations between median TG and the genes of interest, using linear regression, adjusting for sex, median age, median BMI, and the first two principal components of ancestry. Results We replicated the association between TG and APOC3, APOA5, and risk variation at APOE, APOA1/C3/A4/A5 gene cluster, and GCKR. We failed to replicate the association between rare, highly conserved variation at SLC25A40 and TG, as well as for risk variation at INSR and CETP. Conclusions Analysis using data from electronic health records presents challenges that need to be overcome. Although large amounts of genotype data is becoming increasingly accessible, usable phenotype data can be challenging to obtain. We were able to replicate known, strong associations, but were unable to replicate moderate associations due to the limited sample size and missing drug information.


2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Giada Moresco ◽  
Jole Costanza ◽  
Carlo Santaniello ◽  
Ornella Rondinone ◽  
Federico Grilli ◽  
...  

Abstract Background De novo pathogenic variants in the DDX3X gene are reported to account for 1–3% of unexplained intellectual disability (ID) in females, leading to the rare disease known as DDX3X syndrome (MRXSSB, OMIM #300958). Besides ID, these patients manifest a variable clinical presentation, which includes neurological and behavioral defects, and abnormal brain MRIs. Case presentation We report a 10-year-old girl affected by delayed psychomotor development, delayed myelination, and polymicrogyria (PMG). We identified a novel de novo missense mutation in the DDX3X gene (c.625C > G) by whole exome sequencing (WES). The DDX3X gene encodes a DEAD-box ATP-dependent RNA-helicase broadly implicated in gene expression through regulation of mRNA metabolism. The identified mutation is located just upstream the helicase domain and is suggested to impair the protein activity, thus resulting in the altered translation of DDX3X-dependent mRNAs. The proband, presenting with the typical PMG phenotype related to the syndrome, does not show other clinical signs frequently reported in presence of missense DDX3X mutations that are associated with a most severe clinical presentation. In addition, she has brachycephaly, never described in female DDX3X patients, and macroglossia, that has never been associated with the syndrome. Conclusions This case expands the knowledge of DDX3X pathogenic variants and the associated DDX3X syndrome phenotypic spectrum.


Children ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 601
Author(s):  
Kyung-Sun Park

In this study, two different approaches were applied in the analysis of the GAA gene. One was analyzed based on patients with Pompe disease, and the other was analyzed based on GAA genomic data from unaffected carriers in a general population genetic database. For this, GAA variants in Korean and Japanese patients reported in previous studies and in patients reported in the Pompe disease GAA variant database were analyzed as a model. In addition, GAA variants in the Korean Reference Genome Database (KRGDB), the Japanese Multi Omics Reference Panel (jMorp), and the Genome Aggregation Database (gnomAD) were analyzed. Overall, approximately 50% of the pathogenic or likely pathogenic variants (PLPVs) found in unaffected carriers were also found in real patients with Pompe disease (Koreans, 57.1%; Japanese, 46.2%). In addition, there was a moderate positive correlation (Spearman’s correlation coefficient of 0.45–0.69) between the proportion of certain PLPVs in patients and the minor allele frequency of their variants in a general population database. Based on the analysis of general population databases, the total carrier frequency for Pompe disease in Koreans and Japanese was estimated to be 1.7% and 0.7%, respectively, and the predicted genetic prevalence was 1:13,657 and 1:78,013, respectively.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Chang Bao Xu ◽  
Xu Dong Zhou ◽  
Hong En Xu ◽  
Yong Li Zhao ◽  
Xing Hua Zhao ◽  
...  

Abstract Background Primary hyperoxaluria(PH)is a rare autosomal recessive genetic disease that contains three subtypes (PH1, PH2 and PH3). Approximately 80% of PH patients has been reported as subtype PH1, this subtype of PH has been related to a higher risk of renal failure at any age. Several genetic studies indicate that the variants in gene AGXT are responsible for the occurrence of PH1. However, the population heterogeneity of the variants in AGXT makes the genetic diagnosis of PH1 more challenging as it is hard to locate each specific variant. It is valuable to have a complete spectrum of AGXT variants from different population for early diagnosis and clinical treatments of PH1. Case presentation In this study, We performed high-throughput sequencing and genetic analysis of a 6-year-old male PH1 patient from a Chinese family. Two variants (c.346G > A: p.Gly116Arg; c.864G > A: p.Trp288X) of the gene AGXT were identified. We found a nonsense variant (c.864G > A: p.Trp288X) that comes from the proband’s mother and has never been reported previously. The other missense variant (c.346G > A: p.Gly116Arg) was inherited from his father and has been found previously in a domain of aminotransferase, which plays an important role in the function of AGT protein. Furthermore, we searched 110 pathogenic variants of AGXT that have been reported worldwide in healthy local Chinese population, none of these pathogenic variants was detected in the local genomes. Conclusions Our research provides an important diagnosis basis for PH1 on the genetic level by updating the genotype of PH1 and also develops a better understanding of the variants in AGXT by broadening the variation database of AGXT according to the Chinese reference genome.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Lulu Yan ◽  
Ru Shen ◽  
Zongfu Cao ◽  
Chunxiao Han ◽  
Yuxin Zhang ◽  
...  

PPP2R5D-related neurodevelopmental disorder, which is mainly caused by de novo missense variants in the PPP2R5D gene, is a rare autosomal dominant genetic disorder with about 100 patients and a total of thirteen pathogenic variants known to exist globally so far. Here, we present a 24-month-old Chinese boy with developmental delay and other common clinical characteristics of PPP2R5D-related neurodevelopmental disorder including hypotonia, macrocephaly, intellectual disability, speech impairment, and behavioral abnormality. Trio-whole exome sequencing (WES) and Sanger sequencing were performed to identify the causal gene variant. The pathogenicity of the variant was evaluated using bioinformatics tools. We identified a novel pathogenic variant in the PPP2R5D gene (c.620G>T, p.Trp207Leu). The variant is located in the variant hotspot region of this gene and is predicted to cause PPP2R5D protein dysfunction due to an increase in local hydrophobicity and unstable three-dimensional structure. We report a novel pathogenic variant of PPP2R5D associated with PPP2R5D-related neurodevelopmental disorder from a Chinese family. Our findings expanded the phenotypic and mutational spectrum of PPP2R5D-related neurodevelopmental disorder.


Sign in / Sign up

Export Citation Format

Share Document