scholarly journals Leaf nutrient content and transcriptomic analyses of endive (Cichorium endivia) stressed by downpour-induced waterlog reveal a gene network regulating kestose and inulin contents

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Giulio Testone ◽  
Anatoly Petrovich Sobolev ◽  
Giovanni Mele ◽  
Chiara Nicolodi ◽  
Maria Gonnella ◽  
...  

AbstractEndive (Cichorium endivia L.), a vegetable consumed as fresh or packaged salads, is mostly cultivated outdoors and known to be sensitive to waterlogging in terms of yield and quality. Phenotypic, metabolic and transcriptomic analyses were used to study variations in curly- (‘Domari’, ‘Myrna’) and smooth-leafed (‘Flester’, ‘Confiance’) cultivars grown in short-term waterlog due to rainfall excess before harvest. After recording loss of head weights in all cultivars (6-35%), which was minimal in ‘Flester’, NMR untargeted profiling revealed variations as influenced by genotype, environment and interactions, and included drop of total carbohydrates (6–50%) and polyols (3–37%), gain of organic acids (2–30%) and phenylpropanoids (98–560%), and cultivar-specific fluctuations of amino acids (−37 to +15%). The analysis of differentially expressed genes showed GO term enrichment consistent with waterlog stress and included the carbohydrate metabolic process. The loss of sucrose, kestose and inulin recurred in all cultivars and the sucrose-inulin route was investigated by covering over 50 genes of sucrose branch and key inulin synthesis (fructosyltransferases) and catabolism (fructan exohydrolases) genes. The lowered expression of a sucrose gene subset together with that of SUCROSE:SUCROSE-1-FRUCTOSYLTRANSFERASE (1-SST) may have accounted for sucrose and kestose contents drop in the leaves of waterlogged plants. Two anti-correlated modules harbouring candidate hub-genes, including 1-SST, were identified by weighted gene correlation network analysis, and proposed to control positively and negatively kestose levels. In silico analysis further pointed at transcription factors of GATA, DOF, WRKY types as putative regulators of 1-SST.

2021 ◽  
Vol 22 (13) ◽  
pp. 6791
Author(s):  
Yeonhwa Jo ◽  
Chang-Gi Back ◽  
Kook-Hyung Kim ◽  
Hyosub Chu ◽  
Jeong Hun Lee ◽  
...  

Garlic (Allium sativum) is a perennial bulbous plant. Due to its clonal propagation, various diseases threaten the yield and quality of garlic. In this study, we conducted in silico analysis to identify microorganisms, bacteria, fungi, and viruses in six different tissues using garlic RNA-sequencing data. The number of identified microbial species was the highest in inflorescences, followed by flowers and bulb cloves. With the Kraken2 tool, 57% of identified microbial reads were assigned to bacteria and 41% were assigned to viruses. Fungi only made up 1% of microbial reads. At the species level, Streptomyces lividans was the most dominant bacteria while Fusarium pseudograminearum was the most abundant fungi. Several allexiviruses were identified. Of them, the most abundant virus was garlic virus C followed by shallot virus X. We obtained a total of 14 viral genome sequences for four allexiviruses. As we expected, the microbial community varied depending on the tissue types, although there was a dominant microorganism in each tissue. In addition, we found that Kraken2 was a very powerful and efficient tool for the bacteria using RNA-sequencing data with some limitations for virome study.


2020 ◽  
Vol 47 (6) ◽  
pp. 398-408
Author(s):  
Sonam Tulsyan ◽  
Showket Hussain ◽  
Balraj Mittal ◽  
Sundeep Singh Saluja ◽  
Pranay Tanwar ◽  
...  

2020 ◽  
Vol 27 (38) ◽  
pp. 6523-6535 ◽  
Author(s):  
Antreas Afantitis ◽  
Andreas Tsoumanis ◽  
Georgia Melagraki

Drug discovery as well as (nano)material design projects demand the in silico analysis of large datasets of compounds with their corresponding properties/activities, as well as the retrieval and virtual screening of more structures in an effort to identify new potent hits. This is a demanding procedure for which various tools must be combined with different input and output formats. To automate the data analysis required we have developed the necessary tools to facilitate a variety of important tasks to construct workflows that will simplify the handling, processing and modeling of cheminformatics data and will provide time and cost efficient solutions, reproducible and easier to maintain. We therefore develop and present a toolbox of >25 processing modules, Enalos+ nodes, that provide very useful operations within KNIME platform for users interested in the nanoinformatics and cheminformatics analysis of chemical and biological data. With a user-friendly interface, Enalos+ Nodes provide a broad range of important functionalities including data mining and retrieval from large available databases and tools for robust and predictive model development and validation. Enalos+ Nodes are available through KNIME as add-ins and offer valuable tools for extracting useful information and analyzing experimental and virtual screening results in a chem- or nano- informatics framework. On top of that, in an effort to: (i) allow big data analysis through Enalos+ KNIME nodes, (ii) accelerate time demanding computations performed within Enalos+ KNIME nodes and (iii) propose new time and cost efficient nodes integrated within Enalos+ toolbox we have investigated and verified the advantage of GPU calculations within the Enalos+ nodes. Demonstration data sets, tutorial and educational videos allow the user to easily apprehend the functions of the nodes that can be applied for in silico analysis of data.


2013 ◽  
Vol 9 (4) ◽  
pp. 608-616 ◽  
Author(s):  
Zaheer Ul-Haq ◽  
Saman Usmani ◽  
Uzma Mahmood ◽  
Mariya al-Rashida ◽  
Ghulam Abbas

2019 ◽  
Vol 13 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Vishal Ahuja ◽  
Aashima Sharma ◽  
Ranju Kumari Rathour ◽  
Vaishali Sharma ◽  
Nidhi Rana ◽  
...  

Background: Lignocellulosic residues generated by various anthropogenic activities can be a potential raw material for many commercial products such as biofuels, organic acids and nutraceuticals including xylitol. Xylitol is a low-calorie nutritive sweetener for diabetic patients. Microbial production of xylitol can be helpful in overcoming the drawbacks of traditional chemical production process and lowring cost of production. Objective: Designing efficient production process needs the characterization of required enzyme/s. Hence current work was focused on in-vitro and in-silico characterization of xylose reductase from Emericella nidulans. Methods: Xylose reductase from one of the hyper-producer isolates, Emericella nidulans Xlt-11 was used for in-vitro characterization. For in-silico characterization, XR sequence (Accession No: Q5BGA7) was used. Results: Xylose reductase from various microorganisms has been studied but the quest for better enzymes, their stability at higher temperature and pH still continues. Xylose reductase from Emericella nidulans Xlt-11 was found NADH dependent and utilizes xylose as its sole substrate for xylitol production. In comparison to whole cells, enzyme exhibited higher enzyme activity at lower cofactor concentration and could tolerate higher substrate concentration. Thermal deactivation profile showed that whole cell catalysts were more stable than enzyme at higher temperature. In-silico analysis of XR sequence from Emericella nidulans (Accession No: Q5BGA7) suggested that the structure was dominated by random coiling. Enzyme sequences have conserved active site with net negative charge and PI value in acidic pH range. Conclusion: Current investigation supported the enzyme’s specific application i.e. bioconversion of xylose to xylitol due to its higher selectivity. In-silico analysis may provide significant structural and physiological information for modifications and improved stability.


Sign in / Sign up

Export Citation Format

Share Document