Increased expression of acyl-CoA oxidase 2 in the kidney with plasma phytanic acid and altered gut microbiota in spontaneously hypertensive rats

Author(s):  
Masahiro Okamura ◽  
Takahiro Ueno ◽  
Sho Tanaka ◽  
Yusuke Murata ◽  
Hiroki Kobayashi ◽  
...  
2021 ◽  
Vol 135 ◽  
pp. 111189
Author(s):  
Iñaki Robles-Vera ◽  
Néstor de la Visitación ◽  
Marta Toral ◽  
Manuel Sánchez ◽  
Manuel Gómez-Guzmán ◽  
...  

2021 ◽  
Vol 22 (18) ◽  
pp. 9823
Author(s):  
Zhen-Lian Han ◽  
Meng Chen ◽  
Xiao-Dan Fu ◽  
Min Yang ◽  
Maria Hrmova ◽  
...  

Food-derived oligosaccharides show promising therapeutic potential in lowering blood pressure (BP), but the mechanism is poorly understood. Recently, the potential role of gut microbiota (GM) in hypertension has been investigated, but the specific GM signature that may participate in hypertension remains unclear. To test the potassium alginate oligosaccharides (PAO) mechanism in lowering BP and specific microbial signature changes in altering GM, we administered various dosages of PAO in 40 spontaneously hypertensive rats for a duration of six weeks. We analyzed BP, sequenced the 16S ribosomal DNA gene in the cecum content, and gathered RNA-seq data in cardiac tissues. We showed that the oral administration of PAO could significantly decrease systolic BP and mean arterial pressure. Transcriptome analyses demonstrated that the protective effects of developing heart failure were accompanied by down-regulating of the Natriuretic Peptide A gene expression and by decreasing the concentrations of angiotensin II and atrial natriuretic peptide in plasma. In comparison to the Vehicle control, PAO could increase the microbial diversity by altering the composition of GM. PAO could also decrease the ratio of Firmicutes to Bacteroidetes by decreasing the abundance of Prevotella and Phascolarctobacterium bacteria. The favorable effect of PAO may be added to the positive influence of the abundance of major metabolites produced by Gram-negative bacteria in GM. We suggest that PAO caused changes in GM, and thus, they played an important role in preventing the development of cardiovascular disease.


Hypertension ◽  
2019 ◽  
Vol 74 (Suppl_1) ◽  
Author(s):  
Basak Donertas ◽  
Wendi L. Malphurs ◽  
David M. Baekey ◽  
David Julian ◽  
Jasenka Zubcevic

2021 ◽  
Vol 12 ◽  
Author(s):  
Francois M. Abboud ◽  
Michael Z. Cicha ◽  
Aaron Ericsson ◽  
Mark W. Chapleau ◽  
Madhu V. Singh

Hypertension is regulated by immunological components. Spontaneously hypertensive rats (SHR) display a large population of proinflammatory CD161 + immune cells. We investigated the effect of early post-natal gut microbiota on the development of the immune system and resulting hypertension in the SHR. We first examined the microbial populations in the fecal samples of SHR and normotensive control WKY using 16S rDNA sequencing. We found that in the newborn SHR (1-week old) the gut microbiota was qualitatively and quantitatively different from the newborns of normotensive WKY. The representation of the predominant bacterial phylum Proteobacteria was significantly less in 1-week old SHR pups than in WKY (94.5% Proteobacteria in WKY vs. 65.2% in SHR neonates). Even within the phylum Proteobacteria, the colonizing genera in WKY and SHR differed dramatically. Whereas WKY microbiota was predominantly comprised of Escherichia-Shigella, SHR microbiota was represented by other taxa of Enterobacteriaceae and Pasteurellaceae. In contrast, the representation of phylum Firmicutes in the neonatal SHR gut was greater than WKY. Cross-fostering newborn SHR pups by lactating WKY dams caused a dramatic shift in 1-week old cross-fostered SHR gut microbiota. The two major bacterial taxa of phylum Proteobacteria, Enterobacteriaceae and Pasteurellaceae as well as Lactobacillus intestinalis, Proteus, Romboustia and Rothia were depleted after cross-fostering and were replaced by the predominant genera of WKY (Escherichia-Shigella). A proinflammatory IL-17F producing CD161 + immune cell population in the spleen and aorta of cross-fostered SHR was also reduced (30.7% in self-fostered SHR vs. 12.6% in cross-fostered SHR at 30 weeks of age) as was the systolic blood pressure in adult cross-fostered SHR at 10 weeks of age. Thus, altered composition of gut microbiota of SHR toward WKY at early neonatal age had a long-lasting effect on immune system by reducing proinflammatory immune cells and lowering systolic blood pressure.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yiqing Guan ◽  
Kai Chen ◽  
Dongling Quan ◽  
Liangqi Kang ◽  
Danni Yang ◽  
...  

Chronic kidney disease (CKD) is becoming a notable health concern globally. The combination of Scutellaria baicalensis Georgi (SB) and Sophora japonica L. (SJ) has been demonstrated to have anti-hypertensive effects and improve kidney injury clinically. This study aimed to explore the renal protective effect of the combination of SB and SJ against CKD and clarify the potential mechanisms. Male spontaneously hypertensive rats (SHR) were used to induce hypertensive nephropathy and were treated with SB or SJ separately or in combination for 15 weeks, and an antibiotic group was used for a rescue experiment. Blood pressure, serum or urine biochemical markers, serum inflammation factors, short-chain fatty acids (SCFAs), indoxyl sulfate (IS), and oxidative stress indicators were assessed. Western blot analysis was performed to determine the expression of intestinal tight junction proteins, including occludin and ZO-1. The mRNA expression of the SCFAs receptors olfactory 78 (Olfr78) and G protein-coupled receptor 41 (GPR41) was determined by quantitative real-time PCR. Gut microbiota profiles were established via high-throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene. SB and SJ significantly ameliorated the severity of renal injury induced by hypertension. The combination also decreased the ratio of Firmicutes/Bacteroidetes, increased the relative abundance of Lactobacillus, and reduced that of Clostridiaceae. The intestinal barrier was improved, and the change in dominant bacteria reduced IS accumulation and further inhibited oxidative stress activation in kidneys. SB and SJ increased SCFAs production, inhibited inflammatory factor release, and regulated blood pressure by decreasing the expression of Olfr78 and increasing that of GPR41, then alleviated kidney damage. This research demonstrated the positive effects of SB and SJ in a rat model of hypertensive nephropathy, indicated that the treatment of SB and SJ by improving the intestinal barrier function, increasing SCFAs, reducing inflammation, decreasing IS, and inhibiting oxidative stress reactions.


2021 ◽  
Author(s):  
lishun wang ◽  
chaoyue kong ◽  
zhanming li ◽  
yuqin mao ◽  
bing han ◽  
...  

Dietary intake of probiotic yogurt, which has beneficial effects on intestinal microecology, is associated with a lower incidence of hypertension. Recent studies have shown that the gut microbiota plays a...


Sign in / Sign up

Export Citation Format

Share Document