scholarly journals Oligomerization-primed coiled-coil domain interaction with Ubc13 confers processivity to TRAF6 ubiquitin ligase activity

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Lin Hu ◽  
Jiafeng Xu ◽  
Xiaomei Xie ◽  
Yiwen Zhou ◽  
Panfeng Tao ◽  
...  
PLoS Genetics ◽  
2015 ◽  
Vol 11 (12) ◽  
pp. e1005747 ◽  
Author(s):  
Dongqing Xu ◽  
Fang Lin ◽  
Yan Jiang ◽  
Junjie Ling ◽  
Chamari Hettiarachchi ◽  
...  

2005 ◽  
Vol 86 (3) ◽  
pp. 637-644 ◽  
Author(s):  
Noriko Imai ◽  
Shogo Matsumoto ◽  
WonKyung Kang

Baculovirus IE2 functions as a transregulator and is also involved in viral DNA replication. However, the mechanism for these functions remains unknown. It has previously been reported that Bombyx mori nucleopolyhedrovirus (BmNPV) IE2 has a ubiquitin ligase activity that is dependent on the RING finger domain and that IE2 can oligomerize through its C-terminal coiled-coil region. Here, confocal microscopy analysis demonstrated that IE2 formed nuclear foci only during the early phase of infection (2–6 h post-infection). Therefore, it was determined whether the IE2 functional regions described above could affect this characteristic distribution. Transient expression of ie2 also showed focus formation, suggesting that IE2 does not require any other viral factors. IE2 mutants lacking the C-terminal coiled-coil region did not form foci, while a mutant of the RING finger domain showed nuclear foci that appeared larger and brighter than those formed by wild-type IE2. In addition, IE2 exhibited enlarged foci in infected cells following treatment with a proteasome inhibitor, suggesting that foci enlargement resulted from accumulation of IE2 due to inhibition of the ubiquitin-proteasome pathway. These results suggest that BmNPV IE2 oligomerization and ubiquitin ligase activity functional domains regulate nuclear foci formation.


2007 ◽  
Vol 18 (5) ◽  
pp. 1670-1682 ◽  
Author(s):  
Mikael Lerner ◽  
Martin Corcoran ◽  
Diana Cepeda ◽  
Michael L. Nielsen ◽  
Roman Zubarev ◽  
...  

RFP2, a gene frequently lost in various malignancies, encodes a protein with RING finger, B-box, and coiled-coil domains that belongs to the RBCC/TRIM family of proteins. Here we demonstrate that Rfp2 is an unstable protein with auto-polyubiquitination activity in vivo and in vitro, implying that Rfp2 acts as a RING E3 ubiquitin ligase. Consequently, Rfp2 ubiquitin ligase activity is dependent on an intact RING domain, as RING deficient mutants fail to drive polyubiquitination in vitro and are stabilized in vivo. Immunopurification and tandem mass spectrometry enabled the identification of several putative Rfp2 interacting proteins localized to the endoplasmic reticulum (ER), including valosin-containing protein (VCP), a protein indispensable for ER-associated degradation (ERAD). Importantly, we also show that Rfp2 regulates the degradation of the known ER proteolytic substrate CD3-δ, but not the N-end rule substrate Ub-R-YFP (yellow fluorescent protein), establishing Rfp2 as a novel E3 ligase involved in ERAD. Finally, we show that Rfp2 contains a C-terminal transmembrane domain indispensable for its localization to the ER and that Rfp2 colocalizes with several ER-resident proteins as analyzed by high-resolution immunostaining. In summary, these data are all consistent with a function for Rfp2 as an ERAD E3 ubiquitin ligase.


Blood ◽  
2007 ◽  
Vol 109 (12) ◽  
pp. 5308-5317 ◽  
Author(s):  
Janet Kalesnikoff ◽  
Eon J. Rios ◽  
Ching-Cheng Chen ◽  
M. Alejandro Barbieri ◽  
Mindy Tsai ◽  
...  

Abstract RabGEF1/Rabex-5, a guanine nucleotide exchange factor (GEF) for the endocytic pathway regulator, Rab5, contains a Vps9 domain, an A20-like zinc finger (ZnF) domain, and a coiled coil domain. To investigate the importance of these domains in regulating receptor internalization and cell activation, we lentivirally delivered RabGEF1 mutants into RabGEF1-deficient (−/−) mast cells and examined FcϵRI-dependent responses. Wild-type RabGEF1 expression corrected phenotypic abnormalities in −/− mast cells, including decreased basal FcϵRI expression, slowed FcϵRI internalization, elevated IgE + Ag–induced degranulation and IL-6 production, and the decreased ability of −/− cytosol to support endosome fusion. We showed that RabGEF1's ZnF domain has ubiquitin ligase activity. Moreover, the coiled coil domain of RabGEF1 is required for Rabaptin-5 binding and for maintaining basal levels of Rabaptin-5 and surface FcϵRI. However, mutants lacking either of these domains normalized phenotypic abnormalities in IgE + antigen–activated −/− mast cells. By contrast, correction of these −/− phenotypes required a functional Vps9 domain. Thus, FcϵRI-mediated mast cell functional activation is dependent on RabGEF1's GEF activity.


2019 ◽  
Vol 476 (21) ◽  
pp. 3241-3260
Author(s):  
Sindhu Wisesa ◽  
Yasunori Yamamoto ◽  
Toshiaki Sakisaka

The tubular network of the endoplasmic reticulum (ER) is formed by connecting ER tubules through three-way junctions. Two classes of the conserved ER membrane proteins, atlastins and lunapark, have been shown to reside at the three-way junctions so far and be involved in the generation and stabilization of the three-way junctions. In this study, we report TMCC3 (transmembrane and coiled-coil domain family 3), a member of the TEX28 family, as another ER membrane protein that resides at the three-way junctions in mammalian cells. When the TEX28 family members were transfected into U2OS cells, TMCC3 specifically localized at the three-way junctions in the peripheral ER. TMCC3 bound to atlastins through the C-terminal transmembrane domains. A TMCC3 mutant lacking the N-terminal coiled-coil domain abolished localization to the three-way junctions, suggesting that TMCC3 localized independently of binding to atlastins. TMCC3 knockdown caused a decrease in the number of three-way junctions and expansion of ER sheets, leading to a reduction of the tubular ER network in U2OS cells. The TMCC3 knockdown phenotype was partially rescued by the overexpression of atlastin-2, suggesting that TMCC3 knockdown would decrease the activity of atlastins. These results indicate that TMCC3 localizes at the three-way junctions for the proper tubular ER network.


Sign in / Sign up

Export Citation Format

Share Document