scholarly journals The risks of long-term re-injection in supercritical geothermal systems

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Francesco Parisio ◽  
Victor Vilarrasa ◽  
Wenqing Wang ◽  
Olaf Kolditz ◽  
Thomas Nagel

Abstract Supercritical geothermal systems are appealing sources of sustainable and carbon-free energy located in volcanic areas. Recent successes in drilling and exploration have opened new possibilities and spiked interest in this technology. Experimental and numerical studies have also confirmed the feasibility of creating fluid conducting fractures in sedimentary and crystalline rocks at high temperature, paving the road towards Enhanced Supercritical Geothermal Systems. Despite their attractiveness, several important questions regarding safe exploitation remain open. We dedicate this manuscript to the first thermo-hydro-mechanical numerical study of a doublet geothermal system in supercritical conditions. Here we show that thermally-induced stress and strain effects dominate the geomechanical response of supercritical systems compared to pore pressure-related instabilities, and greatly enhance seismicity during cold water re-injection. This finding has important consequences in the design of Supercritical Geothermal Systems.

2021 ◽  
Author(s):  
Kwang-Il Kim ◽  
Hwajung Yoo ◽  
Seheok Park ◽  
Juhyi Yim ◽  
Linmao Xie ◽  
...  

<p>Hydraulic stimulation for the creation of an Enhanced Geothermal System (EGS) reservoir could potentially reactivate a nearby fault and result in man-made earthquakes. In November 15, 2017, an M<sub>w</sub> 5.5 earthquake, the second largest after the initiation of the South Korean national instrumental monitoring system, occurred near an EGS project in Pohang, South Korea. The earthquake occurred on a previously unmapped fault, that is here denoted the M<sub>w</sub> 5.5 Fault. A number of previous studies to model the hydraulic stimulation in the Pohang EGS project have been carried out to identify the mechanism of seismic events. Those previous studies focused on coupled hydro-mechanical processes without the consideration of pre-existing fractures and thermal effects. This study presents an investigation of the mechanisms of induced and triggered seismicity in the Pohang EGS project through three-dimensional coupled thermo-hydro-mechanical numerical simulations. Fractures intersecting the open-hole sections of two deep boreholes, PX-1 and PX-2, clearly indicated by field observations are modeled along with the M<sub>w</sub> 5.5 Fault. Models of stress-dependent permeability models are calibrated based on the numerical reproduction of the pressure-time evolution during the field hydraulic stimulations. The Coulomb failure stress change at the M<sub>w</sub> 5.5 Fault is calculated to quantify the impact of five hydraulic stimulations. In the case of PX-2 stimulations, the pore pressure buildup results in a volumetric expansion of the reservoir and thereby the perturbation of stresses is transferred to the M<sub>w</sub> 5.5 Fault. The volumetric contraction of the reservoir by the temperature reduction could slightly perturb the stress distribution at the M<sub>w</sub> 5.5 Fault. In the case of PX-1 stimulations, shear slip of the PX-1 fracture is explicitly modeled. The modeling shows that transfer of the shear stress drop by the shear slip stabilizes the M<sub>w</sub> 5.5 Fault, which is consistent with the field observation that the seismicity was not induced at the M<sub>w</sub> 5.5 Fault by the PX-1 stimulations. The cooling-induced thermal stress additionally reduces the effective normal stress of PX-1 fracture. Thus, some additional shear slip of the PX-1 fracture is induced by the thermal effect. However, the modeling shows that for both PX-1 and PX-2 stimulations, thermally-induced stress perturbations are very small compared to pressure-induced stress perturbations.</p>


Author(s):  
Dustin Crandall ◽  
Goodarz Ahmadi ◽  
Grant Bromhal

Fractures in rocks enable the motion of fluids through the large, hot geologic formations of geothermal reservoirs. The heat transfer from the surrounding rock mass to the fluid flowing through a fracture depends on the geometry of the fracture, the fluid/solid properties, and the flow rate through the fracture. A numerical study was conducted to evaluate the changes in heat transfer to the fluid flowing through a rock fracture with changes in the flow rate. The aperture distribution of the rock fracture, originally created within Berea sandstone and imaged using a CT-scanner, is well described by a Gaussian distribution and has a mean aperture of approximately 0.6 mm. Water was used as the working fluid, enabling an evaluation of the efficiency of heat flux to the fluid along the flow path of a hot dry geothermal system. As the flow through the fracture was increased to a Reynolds number greater than 2300 the effect of channeling through large aperture regions within the fracture were observed to become increasingly important. For the fastest flows modeled the heat flux to the working fluids was reduced due to a shorter residence time of the fluid in the fracture. Understanding what conditions can maximize the amount of energy obtained from fractures within a hot dry geologic field can improve the operation and long-term viability of enhanced geothermal systems.


2018 ◽  
Author(s):  
James WA Murphy ◽  
Narrissa P Spies ◽  
Robert H Richmond

Symbiotic single-celled dinoflagellates play critical roles in providing corals with both energy and tolerances to survive over a range of environmental conditions. Stressors can cause the breakdown of this symbiosis, resulting in mass bleaching events, and are projected to increase in frequency and spatial extent, threatening the long-term survival of coral reefs. Recent studies have identified symbiont shuffling in corals towards more thermo-tolerant clades as a functional tool for their surviving thermally-induced stress events. However, this was not observed within Pocillopora damicornis colonies tracked over a complete bleaching to recovery cycle during the 2014 mass coral bleaching event in Hawai‘i. Instead, previously acquired symbiont clades were maintained following bleaching recovery. This observation suggests additional factors may be involved in thermal-stress acclimation and adaptation in this coral.


Sign in / Sign up

Export Citation Format

Share Document