scholarly journals A Chlamydia pneumoniae adhesin induces phosphatidylserine exposure on host cells

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jan N. Galle ◽  
Tim Fechtner ◽  
Thorsten Eierhoff ◽  
Winfried Römer ◽  
Johannes H. Hegemann

Abstract In mammalian cells, the internal and external leaflets of the plasma membrane (PM) possess different phospholipids. Phosphatidylserine (PS) is normally confined to the inner (cytoplasmic) membrane leaflet. Here we report that the adhesin CPn0473 of the human pathogenic bacterium Chlamydia pneumoniae (Cpn) binds to the PM of human cells and induces PS externalization but unexpectedly not apoptosis. PS externalization is increased in human cells exposed to infectious Cpn cells expressing increased CPn0473 and reduced in exposure to Cpn expressing decreased CPn0473. CPn0473 binds specifically to synthetic membranes carrying PS and stimulates pore formation. Asymmetric giant unilamellar vesicles (GUVs) in which PS is restricted to the inner leaflet reveal that CPn0473 induces PS externalization in the absence of other proteins. Thus our identification of CPn0473 as a bacterial PS translocator capable of specific and apoptosis-independent PS externalization during infection extends the spectrum of mechanisms intracellular pathogens use to enter host cells.

2006 ◽  
Vol 50 (2) ◽  
pp. 439-444 ◽  
Author(s):  
Robert J. Suchland ◽  
Kara Brown ◽  
David M. Rothstein ◽  
Walter E. Stamm

ABSTRACT Chlamydia species are widely disseminated obligate intracellular pathogens that primarily cause urogenital, ocular, and respiratory infections. In these studies, we show that exposing mammalian cells to antibacterial agents prior to Chlamydia inoculation protects the host cells against subsequent challenge by chlamydiae (the protective effect [PE]). Rifalazil exhibited a considerably stronger PE than did azithromycin, rifampin, doxycycline, and ofloxacin. Specifically, 0.002 μg/ml rifalazil incubated for 1 day with a monolayer of McCoy cells was sufficient to protect against a challenge 2 days later with Chlamydia trachomatis serovar D (UW-3). The PE was observed with five different mammalian cell lines and with a variety of C. trachomatis and Chlamydia pneumoniae isolates. The duration of the PE was 6 to 12 days for rifalazil (depending on the cell line), a maximum of 3 days for azithromycin, and less than a day for the other drugs tested. For rifalazil, the PE was shown to be mediated by inhibition of the chlamydial RNA polymerase since mutants with altered RNA polymerases had correspondingly altered PEs. These results suggest that rifalazil may be unique in its ability to prevent infection with obligate intracellular pathogens for a considerable time after treatment. This characteristic may be of particular public health value in reducing reinfection with chlamydiae.


2005 ◽  
Vol 393 (1) ◽  
pp. 97-106 ◽  
Author(s):  
Michiko Mitsuishi ◽  
Seiko Masuda ◽  
Ichiro Kudo ◽  
Makoto Murakami

sPLA2 (secretory phospholipase A2) enzymes have been implicated in various biological events, yet their precise physiological functions remain largely unresolved. In the present study we show that group V and X sPLA2s, which are two potent plasma membrane-acting sPLA2s, are capable of preventing host cells from being infected with an adenovirus. Bronchial epithelial cells and lung fibroblasts pre-expressing group V and X sPLA2s showed marked resistance to adenovirus-mediated gene delivery in a manner dependent on their catalytic activity. Although adenovirus particles were insensitive to recombinant group V and X sPLA2s, direct addition of these enzymes to 293A cells suppressed both number and size of adenovirus plaque formation. Group V and X sPLA2s retarded the entry of adenovirus into endosomes. Moreover, adenoviral infection was suppressed by LPC (lysophosphatidylcholine), a membrane-hydrolytic product of these sPLA2s. Thus hydrolysis of the plasma membrane by these sPLA2s may eventually lead to the protection of host cells from adenovirus entry. Given that group V and X sPLA2s are expressed in human airway epithelium and macrophages and that the expression of endogenous group V sPLA2 is upregulated by virus-related stimuli in these cells, our present results raise the possibility that group V and X sPLA2s may play a role in innate immunity against adenoviral infection in the respiratory tract.


2020 ◽  
Vol 117 (5) ◽  
pp. 2634-2644 ◽  
Author(s):  
Sebastian Hänsch ◽  
Dominik Spona ◽  
Gido Murra ◽  
Karl Köhrer ◽  
Agathe Subtil ◽  
...  

During invasion of host cells, Chlamydia pneumoniae secretes the effector protein CPn0678, which facilitates internalization of the pathogen by remodeling the target cell’s plasma membrane and recruiting sorting nexin 9 (SNX9), a central multifunctional endocytic scaffold protein. We show here that the strongly amphipathic N-terminal helix of CPn0678 mediates binding to phospholipids in both the plasma membrane and synthetic membranes, and is sufficient to induce extensive membrane tubulations. CPn0678 interacts via its conserved C-terminal polyproline sequence with the Src homology 3 domain of SNX9. Thus, SNX9 is found at bacterial entry sites, where C. pneumoniae is internalized via EGFR-mediated endocytosis. Moreover, depletion of human SNX9 significantly reduces internalization, whereas ectopic overexpression of CPn0678–GFP results in a dominant-negative effect on endocytotic processes in general, leading to the uptake of fewer chlamydial elementary bodies and diminished turnover of EGFR. Thus, CPn0678 is an early effector involved in regulating the endocytosis of C. pneumoniae in an EGFR- and SNX9-dependent manner.


mSphere ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Aaron W. Reinke

ABSTRACT Aaron Reinke studies microsporidian evolution and how microsporidia interact with their hosts. In this mSphere of Influence article, he reflects on how the papers “A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells” (K. J. Roux, D. I. Kim, M. Raida, and B. Burke, J Cell Biol 196:801–810, 2012, https://doi.org/10.1083/jcb.201112098) and “Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging” (H.-W. Rhee, P. Zou, N. D. Udeshi, J. D. Martell, et al., Science 339:1328–1331, 2013, https://doi.org/10.1126/science.1230593) impacted his thinking on how to determine where proteins from intracellular pathogens are located within host cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Praveen Bawankar ◽  
Tina Lence ◽  
Chiara Paolantoni ◽  
Irmgard U. Haussmann ◽  
Migle Kazlauskiene ◽  
...  

AbstractN6-methyladenosine (m6A) is the most abundant internal modification on mRNA which influences most steps of mRNA metabolism and is involved in several biological functions. The E3 ubiquitin ligase Hakai was previously found in complex with components of the m6A methylation machinery in plants and mammalian cells but its precise function remained to be investigated. Here we show that Hakai is a conserved component of the methyltransferase complex in Drosophila and human cells. In Drosophila, its depletion results in reduced m6A levels and altered m6A-dependent functions including sex determination. We show that its ubiquitination domain is required for dimerization and interaction with other members of the m6A machinery, while its catalytic activity is dispensable. Finally, we demonstrate that the loss of Hakai destabilizes several subunits of the methyltransferase complex, resulting in impaired m6A deposition. Our work adds functional and molecular insights into the mechanism of the m6A mRNA writer complex.


2021 ◽  
Vol 5 (6) ◽  
pp. 162
Author(s):  
Rasmeet Singh ◽  
Mandeep Singh ◽  
Nisha Kumari ◽  
Janak ◽  
Sthitapragyan Maharana ◽  
...  

Synthetic membranes are currently employed for multiple separation applications in various industries. They may have been prepared from organic or inorganic materials. Present research majorly focuses on polymeric (i.e., organic) membranes because they show better flexibility, pore formation mechanism, and thermal and chemical stability, and demand less area for installation. Dendritic, carbon nanotube, graphene and graphene oxide, metal and metal oxide, zwitter-ionic, and zeolite-based membranes are among the most promised water treatment membranes. This paper critically reviews the ongoing developments to utilize nanocomposite membranes to purify water. Various membranes have been reported to study their resistance and fouling properties. A special focus is given towards multiple ways in which these nanocomposite membranes can be employed. Therefore, this review provides a platform to develop the awareness of current research and motivate its readers to make further progress for utilizing nanocomposite membranes in water purification.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Uday Tak ◽  
Terje Dokland ◽  
Michael Niederweis

AbstractMycobacterium tuberculosis secretes the tuberculosis necrotizing toxin (TNT) to kill host cells. Here, we show that the WXG100 proteins EsxE and EsxF are essential for TNT secretion. EsxE and EsxF form a water-soluble heterodimer (EsxEF) that assembles into oligomers and long filaments, binds to membranes, and forms stable membrane-spanning channels. Electron microscopy of EsxEF reveals mainly pentameric structures with a central pore. Mutations of both WXG motifs and of a GXW motif do not affect dimerization, but abolish pore formation, membrane deformation and TNT secretion. The WXG/GXW mutants are locked in conformations with altered thermostability and solvent exposure, indicating that the WXG/GXW motifs are molecular switches controlling membrane interaction and pore formation. EsxF is accessible on the bacterial cell surface, suggesting that EsxEF form an outer membrane channel for toxin export. Thus, our study reveals a protein secretion mechanism in bacteria that relies on pore formation by small WXG proteins.


1984 ◽  
Vol 98 (3) ◽  
pp. 904-910 ◽  
Author(s):  
W J Deery ◽  
A R Means ◽  
B R Brinkley

A Triton X-100-lysed cell system has been used to identify calmodulin on the cytoskeleton of 3T3 and transformed SV3T3 cells. By indirect immunofluorescence, calmodulin was found to be associated with both the cytoplasmic microtubule complex and the centrosomes. A number of cytoplasmic microtubules more resistant to disassembly upon either cold (0-4 degrees C) or hypotonic treatment, as well as following dilution have been identified. Most of the stable microtubules appeared to be associated with the centrosome at one end and with the plasma membrane at the other end. These microtubules could be induced to depolymerize, however, by micromolar Ca++ concentrations. These data suggest that, by interacting directly with the microtubule, calmodulin may influence microtubule assembly and ensure the Ca++-sensitivity of both mitotic and cytoplasmic microtubules.


Sign in / Sign up

Export Citation Format

Share Document