scholarly journals Evidence of reactivation of a hydrothermal system from seismic anisotropy changes

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Maria Saade ◽  
Kohtaro Araragi ◽  
Jean Paul Montagner ◽  
Edouard Kaminski ◽  
Philippe Roux ◽  
...  

AbstractSeismic velocity measurements have revealed that the Tohoku-Oki earthquake affected velocity structures of volcanic zones far from the epicenter. Using a seismological method based on ambient seismic noise interferometry, we monitored the anisotropy in the Mount Fuji area during the year 2011, in which the Tohoku-Oki earthquake occurred (Mw = 9.0). Here we show that even at 400 km from the epicenter, temporal variations of seismic anisotropy were observed. These variations can be explained by changes in the alignment of cracks or fluid inclusions beneath the volcanic area due to stress perturbations and the propagation of a hydrothermal fluid surge beneath the Hakone hydrothermal volcanic area. Our results demonstrate how a better understanding of the origin of anisotropy and its temporal changes beneath volcanoes and in the crust can provide insight into active processes, and can be used as part of a suite of volcanic monitoring and forecasting tools.

2020 ◽  
Author(s):  
Felix Kästner ◽  
Simona Pierdominici ◽  
Judith Elger ◽  
Christian Berndt ◽  
Alba Zappone ◽  
...  

<p>Deeply rooted thrust zones are key features of tectonic processes and the evolution of mountain belts. Exhumed and deeply-eroded orogens like the Scandinavian Caledonides allow to study such systems from the surface. Previous seismic investigations of the Seve Nappe Complex have shown indications for a strong but discontinuous reflectivity of this thrust zone, which is only poorly understood. The correlation of seismic properties measured on borehole cores with surface seismic data can help to constrain the origin of this reflectivity. In this study, we compare seismic velocities measured on cores to in situ velocities measured in the borehole. The core and downhole velocities deviate by up to 2 km/s. However, velocities of mafic rocks are generally in close agreement. Seismic anisotropy increases from about 5 to 26 % at depth, indicating a transition from gneissic to schistose foliation. Differences in the core and downhole velocities are most likely the result of microcracks due to depressurization of the cores. Thus, seismic velocity can help to identify mafic rocks on different scales whereas the velocity signature of other lithologies is obscured in core-derived velocities. Metamorphic foliation on the other hand has a clear expression in seismic anisotropy. To further constrain the effects of mineral composition, microstructure and deformation on the measured seismic anisotropy, we conducted additional microscopic investigations on selected core samples. These analyses using electron-based microscopy and X-ray powder diffractometry indicate that the anisotropy is strongest for mica schists followed by amphibole-rich units. This also emphasizes that seismic velocity and anisotropy are of complementary importance to better distinguish the present lithological units. Our results will aid in the evaluation of core-derived seismic properties of high-grade metamorphic rocks at the COSC-1 borehole and elsewhere.</p>


Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. B183-B195 ◽  
Author(s):  
K. De Meersman ◽  
J.-M. Kendall ◽  
M. van der Baan

We relocate 303 microseismic events recorded in 1998 by sensors in a single borehole in the North Sea Valhall oil field. A semiautomated array analysis method repicks the P- and S-wave arrival times and P-wave polarizations, which are needed to locate these events. The relocated sources are confined predominantly to a [Formula: see text]-thick zone just above the reservoir, and location uncertainties are half those of previous efforts. Multiplet analysis identifies 40 multiplet groups, which include 208 of the 303 events. The largest group contains 24 events, and five groups contain 10 or more events. Within each multiplet group, we further improve arrival-time picking through crosscorrelation, which enhances the relative accuracy of the relocated events and reveals that more than 99% of the seismic activity lies spatially in three distinct clusters. The spatial distribution of events and wave-form similarities reveal two faultlike structures that match well with north-northwest–south-southeast-trending fault planes interpreted from 3D surface seismic data. Most waveform differences between multiplet groups located on these faults can be attributed to S-wave phase content and polarity or P-to-S amplitude ratio. The range in P-to-S amplitude ratios observed on the faults is explained best in terms of varying source mechanisms. We also find a correlation between multiplet groups and temporal variations in seismic anisotropy, as revealed by S-wave splitting analysis. We explain these findings in the context of a cyclic recharge and dissipation of cap-rock stresses in response to production-driven compaction of the underlying oil reservoir. The cyclic nature of this mechanism drives the short-term variations in seismic anisotropy and the reactivation of microseismic source mechanisms over time.


2020 ◽  
Author(s):  
Reinoud Sleeman

<p><span><span>The hazardous stratovolcanoes in the Lesser Antilles island arc are monitored with sparse seismic networks. The application of ambient noise interferometry to monitor seismic velocity variations (dv/v) on data from such a sparse instrumented volcanic environment often is a challenge. For the purpose of monitoring it is important a) to analyse the applicability of, and differences between, cross- and single-station cross-correlations, b) to estimate the base level of seismic velocity variations during quiet times and c) to understand the characteristics. Within the EUROVOLC instrument “Transnational Access (TA)” a proposal called VANIC was supported to a) use and evaluate different types of ambient noise cross correlations (single stations vs. multiple stations; auto, cross and cross-component correlations) to be applied on seismic recordings from the Guadeloupe seismic network on La Soufriere, b) compare the results with dv/v base level estimates from the sparse Netherlands Caribbean network on The Quill and Mt. Scenery and c) start collaboration between OVSG and KNMI on both monitoring and research levels with a focus on volcano seismology. This presentation will focus is on the results obtained during the TA visit to OVGS.</span></span></p>


Geophysics ◽  
1941 ◽  
Vol 6 (4) ◽  
pp. 327-355
Author(s):  
E. J. Stulken

For the first time, seismic velocity measurements from well surveys have been made intensively enough to justify an analysis of the velocity field in an entire area instead of just along lines between wells. Maps are drawn showing velocity changes in the southeastern San Joaquin Valley of California. A portion of the valley floor in the neighborhood of Bakersfield, about twenty‐five miles wide and thirty‐five miles long, was chosen for study because of the number of wells in the area whose velocities were known. Differences in average velocity of 1700 feet per second for a constant depth are observed, and horizontal velocity gradients averaging over 100 feet per second per mile are computed. Correction schemes for the adjustment of seismic data are suggested, and correction maps shown. An attempt is made to establish a connection between stratigraphy and seismic velocity. Comparative study of the logs of wells and the velocities observed in them yields certain qualitative conclusions, but attempts to express the relation in a quantitative way fail.


2016 ◽  
Vol 4 (4) ◽  
pp. SQ13-SQ22 ◽  
Author(s):  
Yingping Li ◽  
Ben Hewett

Previous diagnoses of surface seismic velocity models with vertical seismic profile (VSP) data in the Gulf of Mexico have indicated that shallow velocities were poorly constrained by VSP due to ringing caused by multiple casing strings. This ringing also hampered direct measurement of the seawater average velocity (SWAV) at a rig site with direct arrivals of a zero-offset VSP (ZVSP). We have directly measured the SWAV at a rig site with a known water depth by using differential times between primary water bottom multiples (WBMs) and direct first arrivals acquired in a marine VSP survey. We developed a procedure to process ZVSP-WBM signals for SWAV measurement. This WBM method is successfully applied to VSP data recorded at 27 rig sites in the deep-water environments of North and South America. Our results suggest that VSP processors should implement this method and add the SWAV measurement in their future velocity survey reports. We have estimated water bottom depths using differential times. We found that the estimated water depths are comparable with those acquired from sonar measurements by autonomous underwater vehicles, but with large uncertainties. The WBM method is extended by using data from a vertical incidence VSP to measure a profile of the SWAV along the path of a deviated well and evaluate possible lateral variations of SWAV. This method can potentially be applied to a time-lapse VSP to monitor temporal variations of SWAV. We also evaluated the application scope and limitations of the WBM method.


Sign in / Sign up

Export Citation Format

Share Document