volcanic monitoring
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 25)

H-INDEX

7
(FIVE YEARS 2)

Volcanica ◽  
2021 ◽  
Vol 4 (S1) ◽  
pp. 161-181
Author(s):  
Eveling Espinoza ◽  
José Armando Saballos Peréz ◽  
Martha Navarro Collado ◽  
Virginia Tenorio Bellanger ◽  
Teresita Olivares Loaisiga ◽  
...  

The Instituto Nicaragüense de Estudios Territoriales (INETER) is the institution responsible for volcano monitoring in Nicaragua. The Volcanology Division of the General Directorate of Geology and Geophysics currently monitors six active volcanoes by means of seismology, gas measurements, optical webcams, and visual and satellite observations. The volcano monitoring network that INETER maintains is in continuous expansion and modernization. Similarly, the number of technical and scientific personnel has been growing in the last few years. 2015 was the busiest year of the last two decades: Momotombo volcano erupted for the first time in 110 years, a lava lake was emplaced at the bottom of Masaya volcano’s Santiago crater, and Telica volcano experienced a phreatic phase from May to November. Although we have increased our monitoring capabilities, we still have many challenges for the near future that we expect to resolve with support from the national and international geoscientific community. El Instituto Nicaragüense de Estudios Territoriales (INETER) es la institución responsable de la vigilancia volcánica en Nicaragua. Su División de Vulcanología actualmente vigila seis volcanes activos por medio de sismicidad, emisiones de gases, cámaras ópticas, observaciones visuales y teledetección satelital. La red de monitoreo de volcanes que mantiene INETER está en continua expansión y modernización. Del mismo modo, el número de personal técnico y científico ha estado creciendo en los últimos años. El año 2015 fue el año más ocupado que tuvimos en las últimas dos décadas, debido a que el volcán Momotombo entró en erupción por primera vez en los últimos 110 años, se emplazó un lago de lava en el fondo del cráter Santiago (volcán Masaya), y el volcán Telica experimentó una fase freática de mayo a noviembre. A pesar del progreso realizado, todavía tenemos muchos desafíos para el futuro cercano que esperamos lograr con los recursos nacionales y de la comunidad geocientífica internacional.


Volcanica ◽  
2021 ◽  
Vol 4 (S1) ◽  
pp. 73-92
Author(s):  
Rigoberto Aguilar Contreras ◽  
Edu Taipe Maquerhua ◽  
Yanet Antayhua Vera ◽  
Mayra Ortega Gonzales ◽  
Fredy Apaza Choquehuayta ◽  
...  

Urban development in the areas surrounding active volcanoes has led to increasing risks in southern Peru. In order to evaluate the hazard, the Instituto Geológico, Minero y Metalúrgico (INGEMMET) created a Volcano Observatory (OVI) to carry out detailed geological investigations to understand eruption histories and provide volcanic hazard maps. The generation of geological information on volcanoes has allowed the identification of scenarios and zoning of potentially impacted areas. This information has also allowed OVI to implement surveillance networks giving priority to the volcanoes that pose the greatest risk to the population, infrastructure, and economic activities. Since 2006, OVI has been running volcanic monitoring networks with a multidisciplinary approach, improving real-time transmission, and making timely forecasts. Based on geological information and the risk posed by the volcanoes, the greatest efforts have been made to monitor Sabancaya, Misti, Ubinas, and Ticsani volcanoes. Following the order of priorities, monitoring of Coropuna, Huaynaputina, Tutupaca and, Yucamane volcanoes has also been developed. In addition, OVI carries out routine education activities and diffusion of information that serve to manage volcanic risk in Peru. El desarrollo urbano en zonas aledañas a volcanes activos ha conllevado a la generación de riesgos cada vez mayores en el sur del Perú. Con la finalidad de evaluar el peligro, el Instituto Geológico, Minero y Metalúrgico (INGEMMET) creó un observatorio vulcanológico (OVI) para realizar estudios geológicos detallados que permitan conocer las historias eruptivas y elaborar mapas de peligros volcánicos. La generación de información geológica sobre los volcanes ha permitido la identificación de escenarios y la zonificación de áreas con potencial a ser afectadas. Esta información también ha permitido al OVI implementar sus redes de monitoreo priorizando los volcanes que representan mayor riesgo para la población, la infraestructura y las actividades económicas. Desde el año 2006, el OVI viene implementando redes de vigilancia volcánica con un enfoque multidisciplinario, mejorando la transmisión en tiempo real y realizando pronósticos oportunos. En base a la información geológica y el nivel de riesgo de los volcanes, se han puesto los mayores esfuerzos en monitorear los volcanes Sabancaya, Misti, Ubinas y Ticsani. Siguiendo el orden de prioridades, el OVI ha comenzado, también, el monitoreo de los volcanes Coropuna, Huaynaputina, Tutupaca y Yucamane. Además, el observatorio desarrolla actividades permanentes de educación y difusión de la información que sirven a la gestión del riesgo volcánico en el Perú.


Volcanica ◽  
2021 ◽  
Vol 4 (S1) ◽  
pp. 113-139
Author(s):  
Diego Gómez ◽  
Cristian Mauricio López Vélez ◽  
Maria Luisa Monsalve Bustamante ◽  
Adriana del Pilar Agudelo Restrepo ◽  
Gloria Patricia Cortés Jiménez ◽  
...  

The Servicio Geológico Colombiano (SGC) was created in 1916 and has been dedicated to the research and monitoring of active volcanoes in the country since the disaster resulting from the eruption of Nevado del Ruíz Volcano in 1985, where more than 25000 people died due to lahars. Today the SGC has three Volcanological and Seismological Observatories in the cities of Manizales (SGC-OVSM), Popayán (SGC-OVSPop), and Pasto (SGC-OVSP), from where 23 active volcanoes are monitored. The three observatories manage an instrumental network of about 740 stations (permanent and portable) as well as signal repeaters, and cover the disciplines of seismology, geodesy, geochemistry, and potential field, amongst others. Volcanic hazard assessment is also carried out by the SGC, producing hazard maps and reports. These tasks are complemented by programs for promoting geoscience knowledge transfer to the public, developed through different strategies. Although at this time, data derived from volcanic monitoring are not available online, the SGC is analysing this need, for implementation in the near future. El Servicio Geológico Colombiano (SGC) fue creado en 1916, y se ha dedicado a la investigación y monitoreo de los volcanes activos en el país desde el desastre resultante de la erupción del volcán Nevado del Ruíz en 1985, donde más de 25000 personas murieron debido a la ocurrencia de lahares. Hoy en día, el SGC tiene tres Observatorios Vulcanológicos y Sismológicos en las ciudades de Manizales (SGC-OVSM), Popayán (SGC-OVSPop) y Pasto (SGC-OVSP), desde donde se monitorean 23 volcanes activos. Los tres observatorios manejan una red instrumental de aproximadamente 740 estaciones (permanentes y portátiles), como también repetidoras de señal, y cubren las disciplinas de sismología, geodesia, geoquímica y campos de potencial, entre otras. La evaluación de la amenaza volcánica también es realizada por el SGC, produciendo mapas e informes. Estas tareas se complementan con programas para promover transferencia de conocimientos geocientíficos al público, desarrollados a través de diferentes estrategias. Aunque en este momento los datos derivados del monitoreo volcánico no están disponibles en línea, el SGC está analizando esta necesidad para su implementación en un futuro cercano.


Volcanica ◽  
2021 ◽  
Vol 4 (S1) ◽  
pp. 49-71
Author(s):  
Roger Machacca Puma ◽  
José Alberto Del Carpio Calienes ◽  
Marco Antonio Rivera Porras ◽  
Hernando Jhonny Tavera Huarache ◽  
Luisa Diomira Macedo Franco ◽  
...  

Volcano monitoring in Peru is carried out by the Instituto Geofísico del Perú (IGP), through its Centro Vulcanológico Nacional (CENVUL). CENVUL monitors 12 out of 16 volcanoes considered as historically active and potentially active in southern Peru and issues periodic bulletins about the volcanic activity and, depending on the alert-level of each volcano, also issues alerts and warnings of volcanic unrest, ash dispersion, and the occurrence of lahars. The information generated by CENVUL is disseminated to the civil authorities and the public through different information media (newsletters, e-mail, website, social media, mobile app, etc.). The IGP volcanology team was formed after the eruption of Sabancaya volcano in 1988. Since then, geophysical and geological studies, volcanic hazards assessments, and multidisciplinary monitoring realized by the IGP, have provided a comprehensive understanding of volcanic activity in Peru and forecast future eruptive scenarios. Currently, 80% of the historically active and potentially active volcanoes in Peru are equipped with networks of multiparameter instruments, with the seismic monitoring being the most widely implemented. In this report, we present the situation of volcanic monitoring in Peru, the monitoring networks, the techniques employed, as well as efforts to educate and inform the public and officials responsible for disaster risk management.


Volcanica ◽  
2021 ◽  
Vol 4 (S1) ◽  
pp. 183-201
Author(s):  
Rodolfo Antonio Castro Carcamo ◽  
Eduardo Gutiérrez

The Salvadorean volcanic range forms part of Central America Volcanic Arc and is located on the Pacific ring of fire. El Salvador is a country with at least twenty Holocene-active volcanic structures and where most of the population, including the metropolitan area of San Salvador, live near a volcanic complex. Currently, there are six active volcanoes that are continuously monitored by the Observatorio de Amenazas y Recursos Naturales, which is part of the Ministerio del Medio Ambiente y Recursos Naturales. Volcano monitoring involves seismic, geochemical, and visual monitoring techniques, among others. In addition to volcano monitoring and with the aim of early warning of future eruptions, volcanic hazard maps and networks of local observers have been developed. These initiatives together with the general directorate of civil protection, seek to meet the goal of reducing risk from volcanic activity in El Salvador.  La cadena volcánica salvadoreña forma parte del Arco Volcánico de América Central y está localizada dentro de la zona conocida como cinturón de fuego del Pacífico. El Salvador es un país donde se encuentran al menos 20 estructuras volcánicas que han estado activas durante el Holoceno y donde la mayor parte de la población, incluyendo la ciudad capital San Salvador, está ubicada en las proximidades de algún complejo volcánico. Actualmente, seis volcanes activos son continuamente monitoreados por el Observatorio de Amenazas y Recursos Naturales, que es parte del Ministerio del Medio Ambiente y Recursos Naturales. El monitoreo volcánico se realiza mediante técnicas de monitoreo sísmicas, geoquímicas, visuales, entre otras. Como complemento del trabajo de monitoreo, se han desarrollado mapas de amenaza volcánica y redes de observadores locales constituyendo así sistemas de alerta temprana ante futuras erupciones. Estas iniciativas, en conjunto con la dirección general de la protección civil, persiguen el objetivo de reducir el riesgo por actividad volcánica en El Salvador.


2021 ◽  
Vol 2 (5) ◽  
pp. 7070-7084
Author(s):  
Miguel Angel Rosales Ochoa ◽  
José Félix Vázquez Flores ◽  
José Arturo Correa Arredondo

México es un país con más de 2,000 volcanes en su territorio, que de acuerdo con el Centro Nacional de Prevención de Desastres (CENAPRED), se encuentran en actividad 12 volcanes, por lo que realizar el monitoreo volcánico es de suma importancia, especialmente cuando los volcanes se encuentran cercanos a las poblaciones. La utilización de un UAS (sistema aéreo no tripulado) evita exponer a personas en ésta difícil tarea. En la ESIME Ticoman del Instituto Politécnico Nacional se trabaja en el proyecto “Tlapixki”, un UAS para este fin, cuyo objetivo es asegurar que el fuselaje del avión soporte las cargas a las que será sometido, en este trabajo se presenta el análisis estructural del fuselaje en condición de despegue, con base en la reglamentación aérea y usando un paquete de elementos finitos. El material utilizado en la estructura es Aluminio 2024 T3, los resultados obtenidos del análisis muestran valores de esfuerzos mucho menores a los límites del material, mientras que, en el análisis modal, los desplazamientos generados son muy pequeños, indicando que la estructura del fuselaje es adecuada.     Mexico is a country with more than 2,000 volcanoes in its territory, which according to the National Center for Disaster Prevention (CENAPRED), 12 volcanoes are active, so volcanic monitoring is essential, especially when volcanoes are close to populations. The use of a UAS (unmanned aerial system) avoids exposing people to this difficult task. The ESIME Ticoman of the National Polytechnic Institute is working on “Tlapixki” project, a UAS for this purpose, whose objective is to ensure that the aircraft´s fuselage supports the loads to which it will be subjected, this work presents the structural analysis of the fuselage in take-off condition, based on aircrafts regulations and using a finite element software. The material used in the structure is Aluminum 2024 T3. The results obtained from the analysis show values of stress much lower than the limits of the material, while, in the modal analysis, the displacements generated are very small, indicating that the fuselage structure is adequate.


2021 ◽  
Vol 48 (2) ◽  
Author(s):  
Nicolás Oliveras

Measuring the carbon dioxide (CO2) mass flux in a volcanic environment is necessary for volcanic monitoring. CO2 mass flux must be measured continuously and telemetrically to get, almost in real-time, a better understanding of the dynamics of the volcanic degassing processes, contributing to the building, together with other monitoring technics, of a volcano behavior model. This study presents two analytical solutions, 1) a simple diffuse solution and 2) an advective-diffusive solution, which both implement NDIR (Non-Dispersive Infrared Emitter) sensor arrays in an open chamber (diffusion chimney) and an exchange chamber (gas interchanger). The first system, for which the gas speed is negligible, despite being basic (with values reflected in the slope of an equation line), introduces mass flux calculations with a single sensor NDIR. For the second system, where the gas speed is part of the equation, another mathematical solution and three measuring points are required, which demands the system to include a se­cond NDIR sensor for the correct mathematical solution of the equations system. In addition, an embedded system can automate the method by calibrating, controlling an agitation fan, and recording temperature, pressure, and mass flux in volcanic soils at the surface. Since this theoretically proposed method needs to be tested, experimental data are expected to validate the measurement of CO2 mass flux, which will be used as a helpful tool for volcanic monitoring.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniele Andronico ◽  
Elisabetta Del Bello ◽  
Claudia D’Oriano ◽  
Patrizia Landi ◽  
Federica Pardini ◽  
...  

AbstractIn 2019, Stromboli volcano experienced one of the most violent eruptive crises in the last hundred years. Two paroxysmal explosions interrupted the ‘normal’ mild explosive activity during the tourist season. Here we integrate visual and field observations, textural and chemical data of eruptive products, and numerical simulations to analyze the eruptive patterns leading to the paroxysmal explosions. Heralded by 24 days of intensified normal activity and 45 min of lava outpouring, on 3 July a paroxysm ejected ~6 × 107 kg of bombs, lapilli and ash up to 6 km high, damaging the monitoring network and falling towards SW on the inhabited areas. Intensified activity continued until the less energetic, 28 August paroxysm, which dispersed tephra mainly towards NE. We argue that all paroxysms at Stromboli share a common pre-eruptive weeks-to months-long unrest phase, marking the perturbation of the magmatic system. Our analysis points to an urgent implementation of volcanic monitoring at Stromboli to detect such long-term precursors.


2021 ◽  
Vol 13 (11) ◽  
pp. 2225
Author(s):  
Stefano Corradini ◽  
Lorenzo Guerrieri ◽  
Hugues Brenot ◽  
Lieven Clarisse ◽  
Luca Merucci ◽  
...  

The presence of volcanic clouds in the atmosphere affects air quality, the environment, climate, human health and aviation safety. The importance of the detection and retrieval of volcanic SO2 lies with risk mitigation as well as with the possibility of providing insights into the mechanisms that cause eruptions. Due to their intrinsic characteristics, satellite measurements have become an essential tool for volcanic monitoring. In recent years, several sensors, with different spectral, spatial and temporal resolutions, have been launched into orbit, significantly increasing the effectiveness of the estimation of the various parameters related to the state of volcanic activity. In this work, the SO2 total masses and fluxes were obtained from several satellite sounders—the geostationary (GEO) MSG-SEVIRI and the polar (LEO) Aqua/Terra-MODIS, NPP/NOAA20-VIIRS, Sentinel5p-TROPOMI, MetopA/MetopB-IASI and Aqua-AIRS—and compared to one another. As a test case, the Christmas 2018 Etna eruption was considered. The characteristics of the eruption (tropospheric with low ash content), the large amount of (simultaneously) available data and the different instrument types and SO2 columnar abundance retrieval strategies make this cross-comparison particularly relevant. Results show the higher sensitivity of TROPOMI and IASI and a general good agreement between the SO2 total masses and fluxes obtained from all the satellite instruments. The differences found are either related to inherent instrumental sensitivity or the assumed and/or calculated SO2 cloud height considered as input for the satellite retrievals. Results indicate also that, despite their low revisit time, the LEO sensors are able to provide information on SO2 flux over large time intervals. Finally, a complete error assessment on SO2 flux retrievals using SEVIRI data was realized by considering uncertainties in wind speed and SO2 abundance.


Sign in / Sign up

Export Citation Format

Share Document