scholarly journals Fingerprint of rice paddies in spatial–temporal dynamics of atmospheric methane concentration in monsoon Asia

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Geli Zhang ◽  
Xiangming Xiao ◽  
Jinwei Dong ◽  
Fengfei Xin ◽  
Yao Zhang ◽  
...  
2012 ◽  
Vol 9 (7) ◽  
pp. 2793-2819 ◽  
Author(s):  
L. Meng ◽  
P. G. M. Hess ◽  
N. M. Mahowald ◽  
J. B. Yavitt ◽  
W. J. Riley ◽  
...  

Abstract. Methane emissions from natural wetlands and rice paddies constitute a large proportion of atmospheric methane, but the magnitude and year-to-year variation of these methane sources are still unpredictable. Here we describe and evaluate the integration of a methane biogeochemical model (CLM4Me; Riley et al., 2011) into the Community Land Model 4.0 (CLM4CN) in order to better explain spatial and temporal variations in methane emissions. We test new functions for soil pH and redox potential that impact microbial methane production in soils. We also constrain aerenchyma in plants in always-inundated areas in order to better represent wetland vegetation. Satellite inundated fraction is explicitly prescribed in the model, because there are large differences between simulated fractional inundation and satellite observations, and thus we do not use CLM4-simulated hydrology to predict inundated areas. A rice paddy module is also incorporated into the model, where the fraction of land used for rice production is explicitly prescribed. The model is evaluated at the site level with vegetation cover and water table prescribed from measurements. Explicit site level evaluations of simulated methane emissions are quite different than evaluating the grid-cell averaged emissions against available measurements. Using a baseline set of parameter values, our model-estimated average global wetland emissions for the period 1993–2004 were 256 Tg CH4 yr−1 (including the soil sink) and rice paddy emissions in the year 2000 were 42 Tg CH4 yr−1. Tropical wetlands contributed 201 Tg CH4 yr−1, or 78% of the global wetland flux. Northern latitude (>50 N) systems contributed 12 Tg CH4 yr−1. However, sensitivity studies show a large range (150–346 Tg CH4 yr−1) in predicted global methane emissions (excluding emissions from rice paddies). The large range is sensitive to (1) the amount of methane transported through aerenchyma, (2) soil pH (±100 Tg CH4 yr−1), and (3) redox inhibition (±45 Tg CH4 yr−1). Results are sensitive to biases in the CLMCN and to errors in the satellite inundation fraction. In particular, the high latitude methane emission estimate may be biased low due to both underestimates in the high-latitude inundated area captured by satellites and unrealistically low high-latitude productivity and soil carbon predicted by CLM4.


2019 ◽  
Vol 48 (3) ◽  
pp. 762-769
Author(s):  
Victoria S. Fusé ◽  
José I. Gere ◽  
Daiana Urteaga ◽  
M. Paula Juliarena ◽  
Sergio A. Guzmán ◽  
...  

1990 ◽  
Vol 14 ◽  
pp. 359-359
Author(s):  
B. Stauffer ◽  
H. Oeschger ◽  
J. Schwander

Measurements on ice-core samples showed that atmospheric methane concentration changed with the large climatic cycles during the last two glaciations (Stauffer and others, 1988; Raynaud and others, 1988). The methane concentration is lower in cold periods and higher in warm periods. In this paper we discuss the results of CH4 measurements of samples from periods of minor climatic change, like the climatic optimum 8000 years B.P. and the Younger Dryas period about 10 000 to 11 000 years B.P.. The data are interpreted in terms of the present understanding of methane sources and sinks.


1990 ◽  
Vol 14 ◽  
pp. 359
Author(s):  
B. Stauffer ◽  
H. Oeschger ◽  
J. Schwander

Measurements on ice-core samples showed that atmospheric methane concentration changed with the large climatic cycles during the last two glaciations (Stauffer and others, 1988; Raynaud and others, 1988). The methane concentration is lower in cold periods and higher in warm periods. In this paper we discuss the results of CH4 measurements of samples from periods of minor climatic change, like the climatic optimum 8000 years B.P. and the Younger Dryas period about 10 000 to 11 000 years B.P.. The data are interpreted in terms of the present understanding of methane sources and sinks.


Science ◽  
1996 ◽  
Vol 273 (5278) ◽  
pp. 1087-1091 ◽  
Author(s):  
E. J. Brook ◽  
T. Sowers ◽  
J. Orchardo

2012 ◽  
Author(s):  
Anand Ramanathan ◽  
Kenji Numata ◽  
Stewart T. Wu ◽  
Steven X. Li ◽  
Martha W. Dawsey ◽  
...  

2007 ◽  
Vol 7 (1) ◽  
pp. 237-241 ◽  
Author(s):  
D. F. Ferretti ◽  
J. B. Miller ◽  
J. W. C. White ◽  
K. R. Lassey ◽  
D. C. Lowe ◽  
...  

Abstract. Recently Keppler et al. (2006) discovered a surprising new source of methane – terrestrial plants under aerobic conditions, with an estimated global production of 62–236 Tg yr−1 by an unknown mechanism. This is ~10–40% of the annual total of methane entering the modern atmosphere and ~30–100% of annual methane entering the pre-industrial (0 to 1700 AD) atmosphere. Here we test this reported global production of methane from plants against ice core records of atmospheric methane concentration (CH4) and stable carbon isotope ratios (δ13CH4) over the last 2000 years. Our top-down approach determines that global plant emissions must be much lower than proposed by Keppler et al. (2006) during the last 2000 years and are likely to lie in the range 0–46 Tg yr−1 and 0–176 Tg yr−1 during the pre-industrial and modern eras, respectively.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
V.I. Grigorievsky ◽  
◽  
V.P. Sadovnikov ◽  
A.V. Elbakidze ◽  
◽  
...  

Local path measurements of the background methane concentration in the northeast of the Moscow Region were carried out using a remote active lidar based on a powerful Raman amplifier of optical radiation in the wavelength range of ~ 1650 nm. The radiation power in the pulse was about 3 W. The trasses were selected taking into account possible anomalous deviations of the background of atmospheric methane and included forests, gasified buildings with natural gas, a peat lake, a road with heavy traffic, a livestock farm and a solid waste landfill. The length of the distances ranged from ~ 0.6 km to ~ 3.15 km. The highest background concentration of methane was observed over a livestock farm, over a highway and a solid waste landfill, which confirms the fact of an increase in gas emissions over these facilities. Also higher methane levels were observed above of the gasified homes and the heavy traffic road, indicating a possible increase in the number of vehicles using methane as fuel and a possible leak of natural gas from pipelines supplying buildings with natural gas.


Sign in / Sign up

Export Citation Format

Share Document